【题目】已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0),f(2)=0,且方程f(x)=x有等根.
(1)求f(x)的解析式
(2)是否存在常数m,n(m<n),使f(x)的定义域和值域分别是[m,n]和[2m,2n]?如存在,求出m,n的值;如不存在,说明理由.
【答案】
(1)解:由题设,方程f (x)=x有等根,即ax2+(b﹣1)x=0有等根,
∴△=0b=1.
又f (2)=0,
∴4a+2b=0,∴a=﹣ .
故f (x)=﹣ x2+x.
(2)解:∵f (x)=﹣ x2+x=﹣ (x﹣1)2+ ≤ ,
∴2n≤ ,即 n≤ .
而当n≤ 时,f (x)在[m,n]上为增函数,
设满足条件的m,n存在,则 即 ,
又m<n≤ ,由上可解得 m=﹣2,n=0.
即符合条件的m,n存在,其值为m=﹣2,n=0
【解析】(1)利用条件f(2)=0,且方程f(x)=x有等根,建立方程组,求f(x)的解析式(2)利用二次函数的单调性和值域之间的关系建立,方程关系.
【考点精析】认真审题,首先需要了解二次函数的性质(当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减),还要掌握二次函数在闭区间上的最值(当时,当时,;当时在上递减,当时,)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】已知正项等比数列{an}满足:a7=a6+2a5 , 若存在两项am , an , 使得aman=16a12 , 则 + 的最小值为( )
A.
B.
C.
D.不存在
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=1+a( )x+( )x .
(1)当a=﹣2,x∈[1,2]时,求函数f(x)的最大值与最小值;
(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A={x|﹣1<x<2},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的偶函数f(x)满足f(x+1)=﹣f(x),且当x∈[﹣1,0)时f(x)=( )x , 则 f(log28)等于( )
A.3
B.
C.﹣2
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax﹣a+1,(a>0且a≠1)恒过定点(2,2).
(1)求实数a;
(2)在(1)的条件下,将函数f(x)的图象向下平移1个单位,再向左平移a个单位后得到函数g(x),设函数g(x)的反函数为h(x),求h(x)的解析式;
(3)对于定义在(1,4]上的函数y=h(x),若在其定义域内,不等式[h(x)+2]2≤h(x2)+h(x)m+6恒成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数 f(x)= 在[﹣2,3]上的最大值为2,则实数a的取值范围是( )
A.[ ln2,+∞ )
B.[0, ln2]
C.(﹣∞,0]
D.(﹣∞, ln2]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com