精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0),f(2)=0,且方程f(x)=x有等根.
(1)求f(x)的解析式
(2)是否存在常数m,n(m<n),使f(x)的定义域和值域分别是[m,n]和[2m,2n]?如存在,求出m,n的值;如不存在,说明理由.

【答案】
(1)解:由题设,方程f (x)=x有等根,即ax2+(b﹣1)x=0有等根,

∴△=0b=1.

又f (2)=0,

∴4a+2b=0,∴a=﹣

故f (x)=﹣ x2+x.


(2)解:∵f (x)=﹣ x2+x=﹣ (x﹣1)2+

∴2n≤ ,即 n≤

而当n≤ 时,f (x)在[m,n]上为增函数,

设满足条件的m,n存在,则

又m<n≤ ,由上可解得 m=﹣2,n=0.

即符合条件的m,n存在,其值为m=﹣2,n=0


【解析】(1)利用条件f(2)=0,且方程f(x)=x有等根,建立方程组,求f(x)的解析式(2)利用二次函数的单调性和值域之间的关系建立,方程关系.
【考点精析】认真审题,首先需要了解二次函数的性质(当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减),还要掌握二次函数在闭区间上的最值(当时,当时,;当时在上递减,当时,)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}满足:a7=a6+2a5 , 若存在两项am , an , 使得aman=16a12 , 则 + 的最小值为(
A.
B.
C.
D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1+a( x+( x
(1)当a=﹣2,x∈[1,2]时,求函数f(x)的最大值与最小值;
(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|﹣1<x<2},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x+1)=﹣f(x),且当x∈[﹣1,0)时f(x)=( x , 则 f(log28)等于(
A.3
B.
C.﹣2
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=axa+1,(a>0且a≠1)恒过定点(2,2).
(1)求实数a;
(2)在(1)的条件下,将函数f(x)的图象向下平移1个单位,再向左平移a个单位后得到函数g(x),设函数g(x)的反函数为h(x),求h(x)的解析式;
(3)对于定义在(1,4]上的函数y=h(x),若在其定义域内,不等式[h(x)+2]2≤h(x2)+h(x)m+6恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(sinx+cosx)2+cos2x
(1)求f(x)最小正周期;
(2)求f(x)在区间[ ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将边长为2的正方形沿对角线折叠,使得平面平面,若平面,且.

(1)求证: 平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 f(x)= 在[﹣2,3]上的最大值为2,则实数a的取值范围是(
A.[ ln2,+∞ )
B.[0, ln2]
C.(﹣∞,0]
D.(﹣∞, ln2]

查看答案和解析>>

同步练习册答案