分析 (1)由正项数列{an}满足:a1=1,an2+2a2n+1≤3anan+1.可得$\frac{{a}_{n}}{{a}_{n+1}}+\frac{2{a}_{n+1}}{{a}_{n}}$≤3,设$\frac{{a}_{n+1}}{{a}_{n}}$=x,则$\frac{1}{x}+2x≤3$,解得$\frac{1}{2}≤x≤1$,可得$\frac{1}{2}$≤$\frac{{a}_{n+1}}{{a}_{n}}$≤1,利用“累乘求积”即可证明.
(2)由a1=1,an2+2a2n+1≤3anan+1,可得$\frac{{a}_{n}}{{a}_{n+1}^{2}}+\frac{2}{{a}_{n}}$≤$\frac{3}{{a}_{n+1}}$,于是bn=$\frac{{a}_{n}}{{{a}^{2}}_{n+1}}$-$\frac{1}{{a}_{n+1}}$≤$2(\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}})$,即可得出:b1+b2+b3+…+bn≤2$(\frac{1}{{a}_{n+1}}-1)$,由(1)可得:$\frac{1}{{a}_{n+1}}$≤2n,即可证明.
解答 证明:(1)∵正项数列{an}满足:a1=1,an2+2a2n+1≤3anan+1.
∴$\frac{{a}_{n}}{{a}_{n+1}}+\frac{2{a}_{n+1}}{{a}_{n}}$≤3,
设$\frac{{a}_{n+1}}{{a}_{n}}$=x,则$\frac{1}{x}+2x≤3$,化为(2x-1)(x-1)≤0,解得$\frac{1}{2}≤x≤1$,
∴$\frac{1}{2}$≤$\frac{{a}_{n+1}}{{a}_{n}}$≤1,
可得:$\frac{1}{2}$≤$\frac{{a}_{2}}{{a}_{1}}$≤1,$\frac{1}{2}$≤$\frac{{a}_{3}}{{a}_{2}}$≤1,…,$\frac{1}{2}$≤$\frac{{a}_{n}}{{a}_{n-1}}$≤1,
∴$\frac{1}{{2}^{n-1}}$≤$\frac{{a}_{n}}{{a}_{1}}$≤1,a1=1,可得$\frac{1}{{2}^{n-1}}$≤an≤1.
(2)∵a1=1,an2+2a2n+1≤3anan+1.
∴$\frac{{a}_{n}}{{a}_{n+1}}+\frac{2{a}_{n+1}}{{a}_{n}}$≤3,
∴$\frac{{a}_{n}}{{a}_{n+1}^{2}}+\frac{2}{{a}_{n}}$≤$\frac{3}{{a}_{n+1}}$,
∴bn=$\frac{{a}_{n}}{{{a}^{2}}_{n+1}}$-$\frac{1}{{a}_{n+1}}$≤$2(\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}})$,
∴b1+b2+b3+…+bn≤2$[(\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}})+(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}})$+$(\frac{1}{{a}_{n-1}}-\frac{1}{{a}_{n-2}})$+…+$(\frac{1}{{a}_{2}}-\frac{1}{{a}_{1}})]$
=2$(\frac{1}{{a}_{n+1}}-1)$,
由(1)可得:$\frac{1}{{a}_{n+1}}$≤2n,
∴2$(\frac{1}{{a}_{n+1}}-1)$≤2n+1-2,
∴b1+b2+b3+…+bn<2n+1-2.
点评 本题考查了“裂项求和”方法、“累乘求积”、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x2+y2-10x+17=0 | B. | x2+y2-2y-1=0 | ||
C. | x2+y2-8x-4y+12=0 | D. | x2+y2-10x-2y+24=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com