精英家教网 > 高中数学 > 题目详情
5.已知正项数列{an}满足:a1=1,an2+2a2n+1≤3anan+1
(1)求证:$\frac{1}{{2}^{n-1}}$≤an≤1.
(2)设bn=$\frac{{a}_{n}}{{{a}^{2}}_{n+1}}$-$\frac{1}{{a}_{n+1}}$,求证:b1+b2+b3+…+bn<2n+1-2.

分析 (1)由正项数列{an}满足:a1=1,an2+2a2n+1≤3anan+1.可得$\frac{{a}_{n}}{{a}_{n+1}}+\frac{2{a}_{n+1}}{{a}_{n}}$≤3,设$\frac{{a}_{n+1}}{{a}_{n}}$=x,则$\frac{1}{x}+2x≤3$,解得$\frac{1}{2}≤x≤1$,可得$\frac{1}{2}$≤$\frac{{a}_{n+1}}{{a}_{n}}$≤1,利用“累乘求积”即可证明.
(2)由a1=1,an2+2a2n+1≤3anan+1,可得$\frac{{a}_{n}}{{a}_{n+1}^{2}}+\frac{2}{{a}_{n}}$≤$\frac{3}{{a}_{n+1}}$,于是bn=$\frac{{a}_{n}}{{{a}^{2}}_{n+1}}$-$\frac{1}{{a}_{n+1}}$≤$2(\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}})$,即可得出:b1+b2+b3+…+bn≤2$(\frac{1}{{a}_{n+1}}-1)$,由(1)可得:$\frac{1}{{a}_{n+1}}$≤2n,即可证明.

解答 证明:(1)∵正项数列{an}满足:a1=1,an2+2a2n+1≤3anan+1
∴$\frac{{a}_{n}}{{a}_{n+1}}+\frac{2{a}_{n+1}}{{a}_{n}}$≤3,
设$\frac{{a}_{n+1}}{{a}_{n}}$=x,则$\frac{1}{x}+2x≤3$,化为(2x-1)(x-1)≤0,解得$\frac{1}{2}≤x≤1$,
∴$\frac{1}{2}$≤$\frac{{a}_{n+1}}{{a}_{n}}$≤1,
可得:$\frac{1}{2}$≤$\frac{{a}_{2}}{{a}_{1}}$≤1,$\frac{1}{2}$≤$\frac{{a}_{3}}{{a}_{2}}$≤1,…,$\frac{1}{2}$≤$\frac{{a}_{n}}{{a}_{n-1}}$≤1,
∴$\frac{1}{{2}^{n-1}}$≤$\frac{{a}_{n}}{{a}_{1}}$≤1,a1=1,可得$\frac{1}{{2}^{n-1}}$≤an≤1.
(2)∵a1=1,an2+2a2n+1≤3anan+1
∴$\frac{{a}_{n}}{{a}_{n+1}}+\frac{2{a}_{n+1}}{{a}_{n}}$≤3,
∴$\frac{{a}_{n}}{{a}_{n+1}^{2}}+\frac{2}{{a}_{n}}$≤$\frac{3}{{a}_{n+1}}$,
∴bn=$\frac{{a}_{n}}{{{a}^{2}}_{n+1}}$-$\frac{1}{{a}_{n+1}}$≤$2(\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}})$,
∴b1+b2+b3+…+bn≤2$[(\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}})+(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}})$+$(\frac{1}{{a}_{n-1}}-\frac{1}{{a}_{n-2}})$+…+$(\frac{1}{{a}_{2}}-\frac{1}{{a}_{1}})]$
=2$(\frac{1}{{a}_{n+1}}-1)$,
由(1)可得:$\frac{1}{{a}_{n+1}}$≤2n
∴2$(\frac{1}{{a}_{n+1}}-1)$≤2n+1-2,
∴b1+b2+b3+…+bn<2n+1-2.

点评 本题考查了“裂项求和”方法、“累乘求积”、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(10,k),求:
(1)当k为何值时,A,B,C三点共线?
(2)当k为何值时,∠ABC为直角?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(1,2),B(n-1,3),C(-1,3-n).
(1)如果∠A是直角,求实数n的值;
(2)求过坐标原点,且与△ABC的高AD垂直的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC中,A(2,1),B(3,-2),C(-3,1),边BC上的高为AD,求点D的坐标及|$\overrightarrow{AD}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知tanα=$\sqrt{2}$,求$\frac{sin{{\;}^{2}α}^{\;}-sinαcosα-3co{s}^{2}a}{5sinαcosα+si{n}^{2}α+1}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过点A(4,-a)和点B(6,b)的直线与直线y=-x+m垂直,则以AB为直径的圆的方程可以是(  )
A.x2+y2-10x+17=0B.x2+y2-2y-1=0
C.x2+y2-8x-4y+12=0D.x2+y2-10x-2y+24=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一圆与y轴相切,且在直线y=x上截得的弦AB=2$\sqrt{7}$,圆心在直线x-3y=0上,求此圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$\overrightarrow{a}$,$\overrightarrow{b}$不共线,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}•\overrightarrow{b}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算
(1)log225•log34•log59        
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$.

查看答案和解析>>

同步练习册答案