精英家教网 > 高中数学 > 题目详情

【题目】已知点P为函数f(x)=lnx的图象上任意一点,点Q为圆[x﹣(e+ )]2+y2=1任意一点,则线段PQ的长度的最小值为(
A.
B.
C.
D.e+ ﹣1

【答案】C
【解析】解:由圆的对称性可得只需考虑圆心Q(e+ ,0) 到函数f(x)=lnx图象上一点的距离的最小值.
设f(x)图象上一点(m,lnm),
由f(x)的导数为f′(x)=
即有切线的斜率为k=
可得 =﹣m,
即有lnm+m2﹣(e+ )m=0,
由g(x)=lnx+x2﹣(e+ )x,可得g′(x)= +2x﹣(e+ ),
当2<x<3时,g′(x)>0,g(x)递增.
又g(e)=lne+e2﹣(e+ )e=0,
可得x=e处点(e,1)到点Q的距离最小,且为
则线段PQ的长度的最小值为为 ﹣1,即
故选:C.
由圆的对称性可得只需考虑圆心Q(e+ ,0)到函数f(x)=lnx图象上一点的距离的最小值.设f(x)图象上一点P(m,lnm),求得切线的斜率,由两直线垂直的条件:斜率之积为﹣1,可得lnm+m2﹣(e+ )m=0,由g(x)=lnx+x2﹣(e+ )x,求出导数,判断单调性,可得零点e,运用两点的距离公式计算即可得到所求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,底面ABCD是边长为2的菱形,∠DAB60°ACBDO,点P在底面的射影为点OPO3,点E为线段PD中点.

1)求证:PB∥平面AEC

2)若点F为侧棱PA上的一点,当PA⊥平面BDF时,试确定点F的位置,并求出此时几何体FBDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某颜料公司生产A,B两种产品,其中生产每吨A产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨B产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一条之内甲、乙、丙三种染料的用量分别不超过50吨、160吨和200吨,如果A产品的利润为300元/吨,B产品的利润为200元/吨,则该颜料公司一天之内可获得的最大利润为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下面四个推理:

①由“若是实数,则”推广到复数中,则有“若是复数,则”;

②由“在半径为R的圆内接矩形中,正方形的面积最大”类比推出“在半径为R的球内接长方体中,正方体的体积最大”;

③以半径R为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;

④由“直角坐标系中两点的中点坐标为”类比推出“极坐标系中两点的中点坐标为”.

其中,推理得到的结论是正确的个数有( )个

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=xex(e为自然对数的底数),g(x)=(x+1)2 . (I)记
(i)讨论函数F(x)单调性;
(ii)证明当m>0时,F(﹣1+m)>F(﹣1﹣m)恒成立;
(II)令G(x)=af(x)+g(x)(a∈R),设函数G(x)有两个零点,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乡大学生携手回乡创业,他们引进某种果树在家乡进行种植试验.他们分别在五种不同的试验田中种植了这种果树100株并记录了五种不同的试验田中果树的死亡数,得到如下数据:

试验田

试验田1

试验田2

试验田3

试验田4

试验田5

死亡数

23

32

24

29

17

(Ⅰ)求这五种不同的试验田中果树的平均死亡数;

(Ⅱ)从五种不同的试验田中随机取两种试验田的果树死亡数,记为x,y,用(x,y)的形式列出所有的基本事件,其中(x,y)和(y,x)视为同一事件,并求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为平行四边形的四棱锥中,过点的三条棱PA、AB、AD两两垂直且相等,E,F分别是AC,PB的中点.

(Ⅰ)证明:EF//平面PCD;

(Ⅱ)求EF与平面PAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=t,建立如图所示的空间直角坐标系Oxyz

(1)若t=1,求异面直线AC1A1B所成角的大小;

(2)若t=5,求直线AC1与平面A1BD所成角的正弦值;

(3)若二面角A1—BD—C的大小为120°,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面.

(1)求直线与平面所成角的正弦值.

(2)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案