精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系xOy中,已知△ABC的顶点A(0,-2)和C(0,2),顶点B在椭圆$\frac{y^2}{12}$+$\frac{x^2}{8}$=1上,则$\frac{sinA+sinC}{sinB}$的值是$\sqrt{6}$.

分析 由已知利用椭圆的定义可得|AB|+|BC|=2a,AC=2c.在△ABC中,由正弦定理可得:$\frac{sinA+sinC}{sinB}$=$\frac{|BC|+|AB|}{|AC|}$,即可得出.

解答 解:如图所示,
由椭圆$\frac{y^2}{12}$+$\frac{x^2}{8}$=1,可得:a=$2\sqrt{3}$,b=2$\sqrt{2}$,c=$\sqrt{{a}^{2}-{b}^{2}}$=2.
∴△ABC的顶点A(0,-2)和C(0,2),为椭圆的两个焦点.
∴|AB|+|BC|=2a=4$\sqrt{6}$,AC=2c=4.
在△ABC中,由正弦定理可得:$\frac{sinA+sinC}{sinB}$=$\frac{|BC|+|AB|}{|AC|}$=$\frac{2a}{2c}$=$\frac{4\sqrt{6}}{4}$=$\sqrt{6}$.
故答案为:$\sqrt{6}$.

点评 本题考查了椭圆的定义及其标准方程、正弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数y=3sin(-x+$\frac{π}{6}$)的相位和初相分别是(  )
A.-x+$\frac{π}{6}$,$\frac{π}{6}$B.x+$\frac{5π}{6}$,$\frac{5π}{6}$C.x-$\frac{π}{6}$,-$\frac{π}{6}$D.x+$\frac{5π}{6}$,$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sinθ+cosθ=$\frac{1}{5}$,且θ∈(0,π),求下列各式的值:
(1)sinθcosθ;
(2)cos2θ-sin2θ;
(3)sin3θ-cos3θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设复数z=(x-1)+yi(x,y∈R),若|z|≤1,则:
(1)复数z对应的点构成的区域的面积为π
(2)y≥x的概率为$\frac{1}{4}-\frac{1}{2π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知两个关于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0(m∈Z),若两方程的根都是整数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x2+bln(x+1).
(1)若x=1时,函数f(x)取极小值,求实数b的值;
(2)若函数f(x)在定义域上是单调函数,求实数b的取值范围;
(3)若b=-1,证明对任意正整数n,不等式f(1)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{n}$)<1+$\frac{1}{{2}^{3}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{n}^{3}}$都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右两个焦点,若在双曲线上存在点P,使得∠F1PF2=90°,且满足2∠PF1F2=∠PF2F1,那么双曲线的离心率为$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(x+a)ex(e为自然对数的底数),若x=1是函数f(x)的极值点.
(Ⅰ)求a的值;         
(Ⅱ)任意x1,x2∈[0,2]时,证明:|f(x1)-f(x2)|≤e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出四个命题:
①若x2-3x+2=0,则x=1或x=2;
②若x=y=0,则x2+y2=0;
③已知x,y∈N,若x+y是奇数,则x,y中一个是奇数,一个偶数;
④若x1,x2是方程x2-2$\sqrt{3}$x+2=0的两根,则x1,x2可以是一椭圆与一双曲线的离心率.
那么(  )
A.①的逆命题为真B.②的否命题为假C.③的逆命题为假D.④的逆否命题为假

查看答案和解析>>

同步练习册答案