精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=3,2an+1=an+1,则a2=
 
考点:数列的概念及简单表示法
专题:等差数列与等比数列
分析:利用递推式2an+1=an+1,取n=1即可得出.
解答: 解:∵在数列{an}中,a1=3,2an+1=an+1,
∴2a2=a1+1=4,解得a2=2.
故答案为:2.
点评:本题考查了递推式的意义,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)=sin(
1
2
x+φ)(|φ|<
π
2
)的图象(部分)如图,则φ的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角边长为1,的等腰直角三角形ABC中,D为斜边AB的中点,则
CD
CA
等于(  )
A、
1
4
B、
2
2
C、
1
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的奇函数,当x>0时,f(x)=x-2,那么不等式f(x)<0的解集是(  )
A、(0,+∞)
B、(-2,2)
C、(-∞,-2)∪(2,+∞)
D、(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知1<2
1+
1
2
<2
2

1+
1
2
+
1
3
<2
3


观察上述不等式的规律,写出一个关于n的不等式,并用数学归纳法证明你所得的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图给出了计算3+5+7+…+19的值的一个程序框图,其中空白处应填入(  )
A、i>9B、i>10
C、i>19D、i>20

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三个内角A、B、C对应的边分别为a、b、c,
(Ⅰ)若A、B、C成等差数列,且a、b、c成等比数列,求证:△ABC为等边三角形;
(Ⅱ)若cosA、cosB、cosC成等比数列,a、b、c成等比数列,求证:△ABC为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)满足以下条件①f(x-1)=f(5-x)②最小值为-8③f(1)=-6
(1)求f(x)的解析式;
(2)求函数f(x)在区间(-1,4]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

在{an}为等比数列中,an>0,a2a4+2a3a5+a52=16,那么a3+a5=(  )
A、±4B、4C、2D、8

查看答案和解析>>

同步练习册答案