精英家教网 > 高中数学 > 题目详情

【题目】已知点,,直线与直线相交于点,直线与直线的斜率分别记为,且

(1)求点的轨迹的方程;

(2)过定点作直线与曲线交于两点, 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.

【答案】;(面积的最大值为

【解析】

试题()本题求轨迹方程,采用直接法,只要设动点坐标为,求出斜率,由化简可得,注意斜率存在时,最后方程中要剔除此点;()假设存在,首先直线斜率存在,可设其方程为,与椭圆方程联立整理为关于的一元二次方程,同时设交点为,由可得,而,这样可把表示为的函数,可由基本不等式知识求得最大值.

试题解析:()设,则

所以所以(未写出范围扣一分)

)由已知当直线的斜率存在,设直线的方程是

联立,消去

因为,所以

当且仅当时取等号,面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1C, C1B1,C1D1的中点,点H在四边形A1ADD1的边及其内部运动,则H满足条件________时,有BH平面MNP.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的序号是: _________

①已知恒成立,若为真命题,则实数的最大值为2

②已知三点共线,则的最小值为11;

③已知是椭圆的为两个焦点,点在椭圆上,则使三角形为直角三角形的点个数4

④在圆内,过点条弦的长度成等差数列,最小弦长为数列的首项,最大弦长为,若公差那么的取值集合为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C:+=1(a>b>0)的短轴两端点为B1(0,﹣1)、B2(0,1),离心率e=,点P是椭圆C上不在坐标轴上的任意一点,直线B1P和B2P分别与x轴相交于M,N两点,

(1)求椭圆的方程和的值;

(2)若点坐标为(1,0),点的直线与椭圆相交于两点,试求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,2a2+a3+a5=20,且前10项和S10=100.
(1)求数列{an}的通项公式;
(2)求数列 的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有四个命题:
①函数y=tan x在每一个周期内都是增函数.
②函数y=sin(2x+ )的图象关于直线x= 对称;
③函数y=tanx的对称中心(kπ,0),k∈Z.
④函数y=sin(2x﹣ )是偶函数.
其中正确结论个数(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只口袋中装有形状、大小都相同的10个小球,其中有红球2个,黑球3个,白球5个.

从中1次随机摸出2个球,求2个球颜色相同的概率;

从中1次随机摸出3个球,记白球的个数为X,求随机变量X的概率分布和数学期望

每次从袋中随机摸出1个球,记下颜色后放回,连续取3次,求取到红球的次数大于取到白球的次数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的一条弦被点平分,则此弦所在的直线方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆上任取一点,过点轴的垂线段,垂足为,在直线,,当点在圆上运动时.

(1)求点的轨迹的方程,并指出轨迹.

(2)直线l不过原点O且不平行于坐标轴,lC有两个交点AB,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.

查看答案和解析>>

同步练习册答案