【题目】已知点,,直线与直线相交于点,直线与直线的斜率分别记为与,且.
(1)求点的轨迹的方程;
(2)过定点作直线与曲线交于两点, 的面积是否存在最大值?若存在,求出面积的最大值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD-A1B1C1D1中,M,N,P分别是C1C, C1B1,C1D1的中点,点H在四边形A1ADD1的边及其内部运动,则H满足条件________时,有BH∥平面MNP.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中错误的序号是: _________
①已知恒成立,若为真命题,则实数的最大值为2;
②已知三点共线,则的最小值为11;
③已知是椭圆的为两个焦点,点在椭圆上,则使三角形为直角三角形的点个数4 个;
④在圆内,过点有条弦的长度成等差数列,最小弦长为数列的首项,最大弦长为,若公差那么的取值集合为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:+=1(a>b>0)的短轴两端点为B1(0,﹣1)、B2(0,1),离心率e=,点P是椭圆C上不在坐标轴上的任意一点,直线B1P和B2P分别与x轴相交于M,N两点,
(1)求椭圆的方程和的值;
(2)若点坐标为(1,0),过点的直线与椭圆相交于两点,试求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有四个命题:
①函数y=tan x在每一个周期内都是增函数.
②函数y=sin(2x+ )的图象关于直线x= 对称;
③函数y=tanx的对称中心(kπ,0),k∈Z.
④函数y=sin(2x﹣ )是偶函数.
其中正确结论个数( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只口袋中装有形状、大小都相同的10个小球,其中有红球2个,黑球3个,白球5个.
从中1次随机摸出2个球,求2个球颜色相同的概率;
从中1次随机摸出3个球,记白球的个数为X,求随机变量X的概率分布和数学期望;
每次从袋中随机摸出1个球,记下颜色后放回,连续取3次,求取到红球的次数大于取到白球的次数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在圆上任取一点,过点作轴的垂线段,垂足为,点在直线上,且,当点在圆上运动时.
(1)求点的轨迹的方程,并指出轨迹.
(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com