精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: =1(a>b>0)的长轴长为4,焦距为2

(1)求椭圆C的方程;
(2)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点,过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.
①设直线PM,QM的斜率分别为k,k′,证明 为定值;
②求直线AB的斜率的最小值.

【答案】
(1)

解:椭圆C: =1(a>b>0)的长轴长为4,焦距为2 .可得a=2,c= ,b=

可得椭圆C的方程:


(2)

解:过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),设N(﹣t,0)t>0,M是线段PN的中点,则P(t,2m),过点P作x轴的垂线交C于另一点Q,Q(t,﹣2m),

①证明:设直线PM,QM的斜率分别为k,k′,

k= = ,k′= =﹣

= =﹣3.为定值;

②由题意可得 ,m2=4﹣ t2,QM的方程为:y=﹣3kx+m,

PN的方程为:y=kx+m,

联立 ,可得:x2+2(kx+m)2=4,

即:(1+2k2)x2+4mkx+2m2﹣4=0

可得xB= ,yB= +m,

同理解得xA=

yA=

xB﹣xA= =

yB﹣yA= +m﹣( )=

kAB= = = ,由m>0,x0>0,可知k>0,

所以6k+ ,当且仅当k= 时取等号.

此时 ,即m= ,符号题意.

所以,直线AB的斜率的最小值为:


【解析】(1)利用已知条件求出椭圆的几何量,即可求解椭圆C的方程;(2)①设出N的坐标,求出PQ坐标,求出直线的斜率,即可推出结果②求出直线PM,QM的方程,然后求解B,A坐标,利用AB的斜率求解最小值.;本题考查椭圆方程的综合应用,椭圆方程的求法,直线与椭圆的位置关系的应用,考查转化思想以及计算能力.
【考点精析】解答此题的关键在于理解椭圆的标准方程的相关知识,掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,平面PAD 平面ABCD,PA PD ,PA=PD,AB AD,AB=1,AD=2,AC=CD= ,
(1)求证:PD 平面PAB;
(2)求直线PB与平面PCD所成角的正弦值;
(3)在棱PA上是否存在点M,使得BMll平面PCD?若存在,求 的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形是直角梯形, 底面 的中点.

(1)求证:平面平面

(2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线与抛物线相交于两点.

(1)求证:“如果直线过点,那么”是真命题;

(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几个命题

①方程有一个正实根,一个负实根,则

②函数是偶函数,但不是奇函数;

③命题,则的否命题为,则”;

④命题,使得的否定是,都有”;

的充分不必要条件.

正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是 , 半径是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体中,分别是的中点,

(1)求证:平面;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b为非零向量,|b|=2|a|,两组向量x1,x2,x3,x4和y1,y2,y3,y4均由2个a和2个b排列而成.若x1·y1+x2·y2+x3·y3+x4·y4所有可能取值中的最小值为4|a|2,则a与b的夹角为(  )

A. B. C. D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面是菱形的四棱锥P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,点E为棱PB的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则点K到平面PBD的距离为

查看答案和解析>>

同步练习册答案