数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总
若,且,,则函数的单调递增区间是_____________;
解析试题分析:根据二次函数的对称轴性质,可知函数值相等的两个变量关于对称轴对称同时利用,说明了函数与坐标轴的交点横坐标为1和2,因此那么可知,展开可知b=3,c=2,因此,结合绝对值函数的性质,可知在区间上递增,故答案为。考点:本试题考查了函数的单调性的运用。点评:解决该试题的关键是理解函数的关系式,表示的含义,从而得到参数b的值,进而得到解析式,然后利用分段函数的单调性来确定出单调区间即可。属于基础题。
科目:高中数学 来源: 题型:填空题
定义“,”为双曲正弦函数,“,”为双曲余弦函数,它们与正、余弦函数有某些类似的性质,如:、等.请你再写出一个类似的性质: .
若幂函数的图象过点,则______________。
若的值为 .
已知幂函数是偶函数,且在上是增函数,则 。
已知函数在区间上是增函数,则实数的取值范围是 .
已知函数在区间上是减函数,则的取值范围是 .
函数的定义域为 .
已知二次函数的值域是,则的最小值是 .
百度致信 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区