精英家教网 > 高中数学 > 题目详情

函数f(x)的定域为R,若函数f(x)的图象关于y轴及点(1,0)对称,则


  1. A.
    f(x+1)=f(x)
  2. B.
    f(x+2)=f(x)
  3. C.
    f(x+3)=f(x)
  4. D.
    f(x+4)=f(x)
D
分析:由定义在实数上的函数f(x)的图象关于y轴及点(1,0)对称,得到f(x)=f(-x)及f(x)=-f(2-x),
两式联立后得到f(2-x)=-f(-x),然后把x分别用-x和x+2进行两次替换即可求出函数f(x)是以4为周期的周期函数.
解答:根据函数f(x)的定域为R,函数f(x)的图象关于y轴对称,则有f(x)=f(-x)①
又函数f(x)的图象关于点(1,0)对称,则f(x)=-f(2-x)②
联立①②得:f(2-x)=-f(-x),取x=-x,则f(2+x)=-f(x),
所以f(2+(2+x))=-f(2+x)=-(-f(x))=f(x).
即f(x+4)=f(x).
故选D.
点评:本题考查了函数的图象及函数奇偶性的性质,对于抽象函数图象及性质的考查是函数部分高考考查的重点,解答此类题的关键再于对变量x的灵活替换,此题是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于函数y=f(x),有下列命题:
①若a∈[-2,2],则函数f(x)=
x2+ax+1
的定域为R;
②若f(x)=log
1
2
(x2-3x+2)
,则f(x)的单调增区间为(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,则
lim
x→2
[(x-2)f(x)]=0

(文)若f(x)=
1
x2-x-2
,则值域是(-∞,0)∪(0,+∞)
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.
其中真命题的编号是
 
.(文理相同)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′(
1
an+1
)-nan+1

①若a1≥3,求证:an≥n+2;
②若a1=4,试比较
1
1+a1
+
1
1+a2
+…+
1
1+an
2
5
的大小,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于函数y=f(x),有下列命题:
①若a∈[-2,2],则函数f(x)=
x2+ax+1
的定域为R;
②若f(x)=log
1
2
(x2-3x+2)
,则f(x)的单调增区间为(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,则
lim
x→2
[(x-2)f(x)]=0

(文)若f(x)=
1
x2-x-2
,则值域是(-∞,0)∪(0,+∞)
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.
其中真命题的编号是______.(文理相同)

查看答案和解析>>

科目:高中数学 来源:0117 期末题 题型:解答题

已知函数f(x)=ax--2lnx,f(1)=0,
(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=-nan+1,
①若a1≥3,求证:an≥n+2;
②若a1=4,试比较的大小,并说明你的理由。

查看答案和解析>>

同步练习册答案