精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,AA1=2,E为棱CC1的中点.则:
(1)二面角E-AB-C的平面角的正切值是
1
2
1
2

(2)二面角C-AE-B的平面角的正切值是
3
3

(3)点D1到平面EAB的距离是
2
5
5
2
5
5
分析:(1)由正方体性质,AB⊥面EBC,∴AB⊥BC,AB⊥EB,∴∠EBC二面角E-AB-C的平面角 
 (2)连接BD交AC于O,过点O作OF⊥AE交AE于F,连接OF,可得∠OFB是二面角C-AE-B的平面角.根据相似三角形性质求出OF后,解三角形BOF即可.
(3)由于D1C1∥平面ABE,即D1到平面ABE的距离等于C1到平面ABE的距离,利用等体积法求出C1到平面ABE的距离即可.
解答:解(1)由正方体性质,AB⊥面EBC,∴AB⊥BC,AB⊥EB,∴∠EBC二面角E-AB-C的平面角
在直角三角形ECB中,tan∠EBC=
EC
BC
=
1
2

(2)连接BD交AC于O,过点O作OF⊥AE交AE于F,连接OF
∵BO⊥平面ACE,∴AE⊥AE,∴AE⊥面OFB,AE⊥BF,∴∠OFB是二面角C-AE-B的平面角.
在直角三角形ACE中,AC=2
2
,AO=
2
,AE=3,∵OF:CE=AO:AE,∴OF=
2
3

在直角三角形FOB中,tan∠OFB=
OB
OF
=3.
(3)D1C1∥平面ABE,∴点C1到平面EAB的距离等于点D1到平面EAB的距离 h.
∴V A-BCE1=V C1-ABE   即
1
3
S△BEC1×AB=
1
3
△ABE×h,
又S△BEC1=
1
2
×2×1
=1.S△ABE=
1
2
×AB×BE=
1
2
×2×
5
=
5

1
3
× 1×2=
1
3
× 
5
× h
,h=
2
5
5
点评:本题考查的知识点是二面角的平面角及求法,点到平面的距离,(1)的关键是利用定义直接找出所求的二面角的平面角,(2)的关键是通过作垂线,确定∠OFB是二面角B-AE-C的平面角,(3)的关键是转化成C1到平面ABE的距离.考查空间想象、转化、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的各顶点均在半径为1的球面上,则四面体A1-ABC的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为6的正方体ABCD-A1B1C1D1,E,F为AD、CD上靠近D的三等分点,H为BB1上靠近B的三等分点,G是EF的中点.
(1)求A1H与平面EFH所成角的正弦值;
(2)设点P在线段GH上,
GP
GH
=λ,试确定λ的值,使得二面角P-C1B1-A1的余弦值为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2cm的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面与CD所成角正弦值(  )

查看答案和解析>>

同步练习册答案