分析 先通过因式分解求出方程x2-(2+a)x+2a=0的根,再根据判别式确定不等式x2+2ax+2a≤0有解,最后根据复合命题真假求出a的取值范围.
解答 解:①若命题p为真,由x2-(2+a)x+2a=0得(x-2)(x-a)=0,解得x=2或x=a,
又∵方程x2-(2+a)x+2a=0,在[-1,1]上有且仅有一解,∴-≤a≤1.
②若命题q为真,即存在实数x满足不等式x2+2ax+2a≤0
∴△=4a2-8a≥0解得a≤0或a≥2,
因为命题“¬p且q”是真命题,所以,命题p是假命题、命题q是真命题,
当命题p为假时,a<-1或a>1,
当命题q为真时,a≤0或a≥2,
因此,实数a的取值范围为(-∞,-1)∪[2,+∞).
点评 本题主要考查了复合命题真假的判断,一元二次方程和一元二次不等式的解法,以及集合交集的运算,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-2,1] | B. | [0,3] | C. | [-1,2] | D. | [-$\sqrt{3}$,$\sqrt{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1<a<3 | B. | 1<a<3 | C. | $\frac{1}{5}$<a<1 | D. | -$\frac{1}{5}$<a<1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com