精英家教网 > 高中数学 > 题目详情

【题目】已知圆C经过P(4,-2)Q(1,3)两点,且在y轴上截得的线段长为4,半径小于5.

)求直线PQ与圆C的方程;

)若直线l∥PQ,直线l与圆C交于点AB且以线段AB为直径的圆经过坐标原点,求直线l的方程.

【答案】(1)x+y-2=0,(x-1)2+y2=13;(2)x+y-4=0或x+y+3=0。

【解析】

试题分析:()直线PQ的方程为:xy20

设圆心C(ab)半径为r

由于线段PQ的垂直平分线的方程是yx,即yx1

所以ba1. ①

又由在y轴上截得的线段长为4,知r212a2

可得(a1)2(b3)212a2

①②得: a1b0a5b4.

a1b0时,r213满足题意,

a5b4时,r237不满足题意,

故圆C的方程为(x1)2y213.

)设直线l的方程为y=-xmA(x1mx1)B(x2mx2)

由题意可知OA⊥OB,即0

∴x1x2(mx1)(mx2)0, 化简得2x1x2m(x1x2)m20. ③

2x22(m1)xm2120

∴x1x2m1x1x2.

代入式,得m2m·(1m)m2120

∴m4m=-3,经检验都满足判别式Δ>0

∴y=-x4y=-x3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为菱形, 底面为直线上一动点.

Ⅰ)求证:

Ⅱ)若 分别为线段 的中点,求证: 平面

Ⅲ)直线上是否存在点,使得平面平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a和b是计算机在区间(0,2)上产生的均匀随机数,则一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 均为等边三角形, .

(Ⅰ)求证: 平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱的所有棱长均为2, 中点.

(Ⅰ)求证: 平面

(Ⅱ)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),曲线C的极坐标方程是ρ= ,以极点为原点,极轴为x轴正方向建立直角坐标系,点M(﹣1,0),直线l与曲线C交于A、B两点.
(Ⅰ)写出直线l的极坐标方程与曲线C的普通方程;
(Ⅱ)求线段MA、MB长度之积MAMB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍,且经过点M(2,1),直线平行OM,且与椭圆交于A、B两个不同的点。

(Ⅰ)求椭圆方程;

()AOB为钝角,求直线轴上的截距的取值范围;

()求证直线MA、MB轴围成的三角形总是等腰三角形。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2ωx+ sin2ωx(ω>0)的最小正周期为π,给出下列四个命题:
①f(x)的最大值为3;
②将f(x)的图象向左平移 后所得的函数是偶函数;
③f(x)在区间[﹣ ]上单调递增;
④f(x)的图象关于直线x= 对称.
其中正确说法的序号是(
A.②③
B.①④
C.①②④
D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场对顾客实行购物优惠活动,规定一次购物付款总额:

(1)如果不超过200元,则不给予优惠;

(2)如果超过200元但不超过500元,则按标价给予9折优惠;

(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.

某人单独购买AB商品分别付款168元和423元,假设他一次性购买AB两件商品,则应付款是

A. 413.7B. 513.7C. 546.6D. 548.7

查看答案和解析>>

同步练习册答案