精英家教网 > 高中数学 > 题目详情

【题目】我校为进行“阳光运动一小时”活动,计划在一块直角三角形ABC的空地上修建一个占地面积为S(平方米)的矩形AMPN健身场地.如图,点M在AC上,点N在AB上,且P点在斜边BC上.已知∠ACB=60°,|AC|=30米,|AM|=x米,x∈[10,20].设矩形AMPN健身场地每平方米的造价为 元,再把矩形AMPN以外(阴影部分)铺上草坪,每平方米的造价为 元(k为正常数).

(1)试用x表示S,并求S的取值范围;
(2)求总造价T关于面积S的函数T=f(S);
(3)如何选取|AM|,使总造价T最低(不要求求出最低造价).

【答案】
(1)解:在Rt△PMC中,显然|MC|=30﹣x,∠PCM=60°,

矩形AMPN的面积 ,x∈[10,20],

由x(30﹣x)≤( 2=225,当x=15时,可得最大值为225

当x=10或20时,取得最小值200

于是 为所求.


(2)解:矩形AMPN健身场地造价T1=

又△ABC的面积为 ,即草坪造价T2=

由总造价T=T1+T2


(3)解:∵

当且仅当 时等号成立,

此时 ,解得x=12或x=18,

答:选取|AM|的长为12米或18米时总造价T最低


【解析】(1)根据题意,得到健身场地的面积,再结合矩形的面积计算公式求出面积,由二次函数的性质求得范围,(2)由三角形的面积和题意得到总造价,得到范围,(3)使用均值不等式得到造价最低时的x=12或x=18.
【考点精析】掌握函数的最值及其几何意义和函数的值是解答本题的根本,需要知道利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,点E是棱AA1的中点,则异面直线DE与BC所成的角的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱桥最高点距水面8m,拱桥内水面宽32m,船只在水面以上部分高6.5m,船顶部宽8m,故通行无阻,如图所示.

(1)建立适当的平面直角坐标系,求正常水位时圆弧所在的圆的方程;
(2)近日水位暴涨了2m,船已经不能通过桥洞了.船员必须加重船载,降低船身在水面以上的高度,试问:船身至少降低多少米才能通过桥洞?(精确到0.1m,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣2x+c,且f(x)>0的解集是
(1)求f(2)的最小值及f(2)取最小值时f(x)的解析式;
(2)在f(2)取得最小值时,若对于任意的x>2,f(x)+4≥m(x﹣2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】仙游某家具城生产某种家具每件成本为3万元,每件售价为x万元(x>3),月销量为t件,经验表明,t= +10(x﹣6)2 , 其中3<x<6,a为常数.已知销售价格为5万元时,月销量为11件.
(1)求a的值;
(2)求售价定为多少时,该家具的月利润最大,最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆中心是原点O,它的短轴长为 ,右焦点F(c,0)(c>0),它的长轴长为2a(a>c>0),直线l: 与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.
(1)求椭圆的方程和离心率;
(2)若 ,求直线PQ的方程;
(3)设 (λ>1),过点P且平行于直线l的直线与椭圆相交于另一点M,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点P在圆O:x2+y2=8上运动,PD⊥x轴,D为垂足,点M在线段PD上,满足
(1)求点M的轨迹方程;
(2)过点Q(1, )作直线l与点M的轨迹相交于A、B两点,使点Q为弦AB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块边长为1(百米)的正方形区域ABCD.在点A处有一个可转动的探照灯,其照射角∠PAQ始终为45°(其中点P,Q分别在边BC,CD上),设BP=t.
(I)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值;
(Ⅱ)设探照灯照射在正方形ABCD内部区域的面积S(平方百米),求S的最大值.

查看答案和解析>>

同步练习册答案