分析 点A(-2,-3)关于y轴的对称点为A′(2,-3),可设反射光线所在直线的方程为:y+3=k(x-2),利用直线与圆相切的性质即可得出.
解答 解:点A(-2,-3)关于y轴的对称点为A′(2,-3),
故可设反射光线所在直线的方程为:y+3=k(x-2),化为kx-y-2k-3=0.
∵反射光线与圆(x+3)2+(y-2)2=1相切,
∴圆心(-3,2)到直线的距离d=$\frac{|-3k-2-2k-3|}{\sqrt{{k}^{2}+1}}$=1,
化为24k2+50k+24=0,
∴k=-$\frac{4}{3}$,或k=-$\frac{3}{4}$.
故入射光线所在直线方程为:-$\frac{4}{3}$x-y-$\frac{1}{3}$=0或-$\frac{3}{4}$x-y-$\frac{3}{2}$=0,
即4x+3y+1=0或3x+4y+6=0.
点评 本题考查了反射光线的性质、直线与圆相切的性质、点到直线的距离公式、点斜式、对称点,考查了计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | [-3,1]∪(3,+∞) | B. | (-3,1)∪(2,+∞) | C. | (-1,1)∪(3,+∞) | D. | (-∞,-3)∪(1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,4] | B. | (-∞,-1]∪[4,+∞) | C. | (-3,5) | D. | (-∞,-3)∪[-1,4]∪(5,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x+y-2=0 | B. | x-y+2=0 | C. | x+y-3=0 | D. | x-y+3=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com