解析:设直线l的方程为y=k(x+1)(k≠0),代入抛物线方程得
k2x2+(2k2-2a)x+k2=0.①?
若存在以AB为直径且过焦点F的圆,则AF⊥BF.
设A、B的坐标分别为(x1,y1)、(x2,y2),?
则,
即k2(x1+1)(x2+1)+(x1-)(x2-)=0,②
由方程①有x1+x2=,x1x2=1.
代入②并整理得?
k2=.
∵k2>0,a<0,?
∴>0,a<0,?
即a2+12a+4>0且a<0.
解得a<-6-4或-6+4
又当k不存在时,即直线l⊥x轴,
此时直线l:x=-1.
可得A(-1,)、B(-1, ).
由k AF·k BF=-1得a=-6±4.
故当a≤-6-42或-6+42≤a<0时,存在满足题设的圆.
当-6-4<a<-6+42时,不存在这样的圆.
科目:高中数学 来源: 题型:
(A)4 (B)8
(C)16 (D)32
查看答案和解析>>
科目:高中数学 来源: 题型:
已知抛物线C:y2=4x.
(1)若椭圆左焦点及相应的准线与抛物线C的焦点F及准线l分别重合,试求椭圆短轴端点B与焦点F连线中点P的轨迹方程;
(2)若M(m,0)是x轴上的一定点,Q是(1)所求轨迹上任一点,试问|MQ|有无最小值?若有,求出其值;若没有,说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练16练习卷(解析版) 题型:解答题
已知抛物线C:y2=2px(p>0)过点A(1,-2).
(1)求抛物线C的方程,并求其准线方程.
(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练16练习卷(解析版) 题型:填空题
已知抛物线C:y2=2px(p>0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B,若=,则p= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com