精英家教网 > 高中数学 > 题目详情

【题目】“雾霾治理”“延迟退休”“里约奧运”“量子卫星”“神舟十一号”成为现在社会关注的个热点.小王想利用暑假时间调查一下社会公众对这些热点的关注度.若小王准备按照顺序分别调査其中的个热点,则“量子卫星”作为其中的一个调查热点,但不作为第一个调查热点的种数为______

【答案】

【解析】

根据题意,分步进行①,由题目的限制条件分析易得“量子卫星”有种安排方法,②,在剩下的个热点中任选个,安排在剩下的个位置,即可得出结果.

解:根据题意,分步进行

①,小王准备把“量子卫星”作为其中的一个调查热点,但不作为第一个调查热点,

则“量子卫星”可以安排在后面的三个位置,有种安排方法,

②,在剩下的个热点中任选个,安排在剩下的个位置,有种安排方法,

则有种不同的安排方法;

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】的内角的对边分别为,若,且,则下列选项不一定成立的是( )

A.B.的周长为

C.的面积为D.的外接圆半径为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现代研究表明,体脂率(体脂百分数)是衡量人体体重与健康程度的一个标准.为分析体脂率对人体总胆固醇的影响,从女性志愿者中随机抽取12名志愿者测定其体脂率值及总胆固醇指标值(单位:mmol/L),得到的数据如表所示:

(1)利用表中的数据,是否可用线性回归模型拟合的关系?请用相关系数加以说明.(若,则线性相关程度很高,可用线性回归模型拟合)

(2)求出的线性回归方程,并预测总胆固醇指标值为9.5时,对应的体脂率为多少?(上述数据均要精确到0.1)

(3)医学研究表明,人体总胆固醇指标值服从正态分布,若人体总胆固醇指标值在区间之外,说明人体总胆固醇异常,该志愿者需作进一步医学观察.现用样本的作为的估计值,用样本的标准差作为的估计值,从这12名女志愿者中随机抽4人,记需作进一步医学观察的人数为,求的分布列和数学期望.

附:参考公式:相关系数

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线与曲线两交点所在直线的极坐标方程;

(2)若直线的极坐标方程为,直线轴的交点为,与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:

学时数

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);

(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.

(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?

非十分爱好该课程者

十分爱好该课程者

合计

男性

女性

合计

100

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有10000人,其中男生7500人,女生2500人,为调查该校学生每则平均体育运动时间的情况,采用分层抽样的方法,收集200位学生每周平均体育运动时间的样本数据(单位:小时).调查部分结果如下列联表:

男生

女生

总计

每周平均体育运动时间不超过4小时

35

每周平均体育运动时间超过4小时

30

总计

200

(1)完成上述每周平均体育运动时间与性别的列联表,并判断是否有把握认为“该校学生的每周平均体育运动时间与性别有关”;

(2)已知在被调查的男生中,有5名数学系的学生,其中有2名学生每周平均体育运动时间超过4小时,现从这5名学生中随机抽取2人,求恰有1人“每周平均体育运动时间超过4小时”的概率.

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cx2=2py经过点(21).

(Ⅰ)求抛物线C的方程及其准线方程;

(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点MN,直线y=1分别交直线OMON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为常数, 为自然对数的底数).

1)当时,求函数的单调区间;

2)若函数内存在三个极值点,求实数的取值范围.

查看答案和解析>>

同步练习册答案