分析 证明PD⊥面ABE,关键是证明AB⊥PD,AE⊥PD.
解答 证明:∵PA⊥底面ABCD,
∴PA⊥AB,PA⊥CD
又AB⊥AD,∴AB⊥面PAD,∴AB⊥PD;
又设AD=$\frac{2\sqrt{3}}{3}$AB=$\frac{2\sqrt{3}}{3}$a,AB⊥AD,∠ABC=60°,
∴CD=$\sqrt{{a}^{2}+\frac{4}{3}{a}^{2}-2•a•\frac{2\sqrt{3}}{3}a•\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{3}}{3}$a
∴AC⊥CD,∴CD⊥面PAC,∴CD⊥AE.
∵PA=AB=BC=AC,E是PC的中点,
∴AE⊥PC,
∵CD∩PC=C,
∴AE⊥面PCD,
∴AE⊥PD.
∵AB∩AE=A,
∴PD⊥面ABE.
点评 本题主要考查了线面垂直的判定,同时考查了空间想象能力,推理论证能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x+2y-3=0 | B. | x+4y-5=0 | C. | 4x+y-5=0 | D. | x-2y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com