【题目】已知函数.
(1) 把的图象上每一点的纵坐标变为原来的倍,再将横坐标向右平移 个单位,可得图象,求,的值;
(2) 若对任意实数和任意,恒有,求实数的取值范围.
【答案】(1) ;(2) .
【解析】
(1)由图象变换规律得到,的值;
(2)令m=3+2sinθcosθ,n=asinθ+acosθ,则,利用三角函数公式换元,即可得解.
(1)=.
把的图象上每一点的纵坐标变为原来的倍,再将横坐标向右平移 个单位,可得图象,
∴;
(2)任意x∈R与,有恒成立
令m=3+2sinθcosθ,n=asinθ+acosθ,则或
令t=sinθ+cosθ2sinθcosθ=t2﹣1且,
即:m=t2+2,n=at,m﹣n=t2﹣at+2
则:或
参数分离求最值(注意单调区间)
由或
或或
其中在上单调递减,,当且仅当等号成立.
由单调性可得或
综上可得实数a的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}满足2Sn=(an+2)bn,其中Sn是数列{an}的前n项和.
(1)若数列{an}是首项为,公比为-的等比数列,求数列{bn}的通项公式;
(2)若bn=n,a2=3,求证:数列{an}满足an+an+2=2an+1,并写出数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣ax,(a>0), ,命题p:an=f(n)是递增数列,命题q:g(x)在(a,π)上有且仅有2条对称轴.
(1)求g(x)的周期和单调递增区间;
(2)若p∧q为真,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asinB=﹣bsin(A+ ).
(1)求A;
(2)若△ABC的面积S= c2 , 求sinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在菱形中, , ,以4个顶点为圆心的扇形的半径为1,若在该菱形中任意选取一点,该点落在阴影部分的概率为,则圆周率的近似值为( )
A. B. C. D.
【答案】C
【解析】因为菱形的内角和为360°,
所以阴影部分的面积为半径为1的圆的面积,
故由几何概型可知,
解得.选C。
【题型】单选题
【结束】
12
【题目】已知函数f(x)=,若g(x)=f(x)-a恰好有3个零点,则a的取值范围为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x2-2x.
(1)写出函数y=f(x)的解析式
(2)若方程f(x)=a恰有3个不同的解,求a的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com