精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)讨论在定义域内的极值点的个数;

2)若对恒成立,求实数的取值范围;

3)证明:若,不等式成立.

【答案】1)当时,函数有两个极值点;当时,函数没有极值点(23)证明见解析

【解析】

1)求导可得,转化问题为的变号零点个数,分别讨论,,的情况即可;

2)转化问题为上恒成立,,利用导函数求得的最小值,进而求解;

3)由(2)可得恒成立,即,则欲证,只需证,设,进而利用导函数求得的最小值大于等于0即可.

1)解:由题,

,令,即方程,,

时,,则,此时没有极值点;

时,,设方程两根为,,不妨设,

,,则,

时,

时,,

此时,是函数的两个极值点,

时,,设方程两根为,,

,,所以,,

所以当,,故没有极值点,

综上,当时,函数有两个极值点;当时,函数没有极值点.

2)解:由题,上恒成立,

上恒成立,

上恒成立,

,

,

因为,

时,,则单调递减;当,,单调递增;

所以,

所以

3)证明:由(2)知,所以恒成立,

,

欲证,

只需证,

,则,

时,,则单调递减;当时,,单调递增,

所以,即,

所以当时,不等式成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)若不过原点的直线与椭圆相交于两点,与直线相交于点,且是线段的中点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班级四位学生参加了文科综合知识竞赛,在竞赛结果公布前,地理老师预测得冠军的是;历史老师预测得冠军的是;政治老师预测得冠军的不可能是;语文老师预测得冠军的是,而班主任老师看了竞赛结果后说以上只有两位老师都说对了,则得冠军的是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计的频率分布直方图如图所示.

(1)估计这组数据平均数;

(2)现按分层抽样从质量为的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;

(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总计,该种植园中还未摘下的芒果大约还有10000个,经销商提出以下两种收购方案:

方案①:所有芒果以9元/千克收购;

方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.

通过计算确定种植园选择哪种方案获利更多.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某电视台主办的歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中为数字0~9中的一个),则下列结论中正确的是( )

A. 甲选手的平均分有可能和乙选手的平均分相等

B. 甲选手的平均分有可能比乙选手的平均分高

C. 甲选手所有得分的中位数比乙选手所有得分的中位数低

D. 甲选手所有得分的众数比乙选手所有得分的众数高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】吸烟有害健康,远离烟草,珍惜生命。据统计一小时内吸烟5支诱发脑血管病的概率为0.02,一小时内吸烟10支诱发脑血管病的概率为0.16.已知某公司职员在某一小时内吸烟5支未诱发脑血管病,则他在这一小时内还能继吸烟5支不诱发脑血管病的概率为( )

A. B. C. D. 不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算机考试分理论考试与实际操作两部分,每部分考试成绩只记合格不合格,两部分考试都合格者,则计算机考试合格,并颁发合格证书甲、乙、丙三人在理论考试中合格的概率依次为,在实际操作考试中合格的概率依次为,所有考试是否合格相互之间没有影响.

1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?

2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求具有如下性质的质数的最大值:存在1,2,的两个排列(可以相同),使除所得的余数互不相同.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】杨辉三角是二项式系数在三角形中的一种几何排列,是中国古代数学的杰出研究成果之一.在欧洲,左下图叫帕斯卡三角形,帕斯卡在1654年发现的这一规律,比杨辉要迟393年,比贾宪迟600年.某大学生要设计一个程序框图,按右下图标注的顺序将表上的数字输出,若第5次输出数“1”后结束程序,则空白判断框内应填入的条件为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案