【题目】函数f(x)对一切实数x,y均有f(x+y)﹣f(y)=(x+2y+2)x成立,且f(2)=12.
(1)求f(0)的值;
(2)在(1,4)上存在x0∈R,使得f(x0)﹣8=ax0成立,求实数a的取值范围.
【答案】
(1)解:令x=2,y=0,则f(2+0)﹣f(0)=(2+0+2)×2=8.
∵f(2)=12,∴f(0)=4
(2)解:令y=0,易得:f(x)=x2+2x+4.
在(1,4)上存在x0∈R,使得f(x0)﹣8=ax0成立,
等价于方程x2+2x=4﹣8=ax在(1,4)内有解.
即a=x+2﹣ ,1<x<4.
设函数g(x)=x﹣ +2(x∈(1,4)).
设x1,x2是(1,4)上任意两个实数,且x1<x2,则
g(x1)﹣g(x2)=(x1﹣x2) .
由1<x1<x2<4,得x1﹣x2<0,
于是g(x1)﹣g(x2)<0,
即g(x1)<g(x2),
所以函数g(x)=x﹣ +2在(1,4)上是增函数.
∴实数a的取值范围是(﹣1,5)
【解析】(1)令x=2,y=0,则f(2+0)﹣f(0)=(2+0+2)×2=8.即可得出.(2)令y=0,易得:f(x)=x2+2x+4.在(1,4)上存在x0∈R,使得f(x0)﹣8=ax0成立等价于方程x2+2x=4﹣8=ax在(1,4)内有解.即a=x+2﹣ ,1<x<4.设函数g(x)=x﹣ +2(x∈(1,4)).证明其单调性即可得出.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是(写出所有正确命题的编号)
①存在这样的直线,既不与坐标轴平行又不经过任何整点;
②如果k与b都是无理数,则直线y=kx+b不经过任何整点;
③如果直线l经过两个不同的整点,则直线l必经过无穷多个整点;
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数;
⑤存在恰经过一个整点的直线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A是实数集R的子集,如果x0∈R满足:对任意a>0,都存在x∈A,使得0<|x﹣x0|<a,则称x0为集合A的聚点,给出下列集合(其中e为自然对数的底):①{1+ |x>0};②{2x|x∈N};③{x2+x+2|x∈R};④{lnx|x>0且x≠e},其中,以1为聚点的集合有( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了72名员工进行调查,所得的数据如表所示:
积极支持改革 | 不太支持改革 | 合 计 | |
工作积极 | 28 | 8 | 36 |
工作一般 | 16 | 20 | 36 |
合 计 | 44 | 28 | 72 |
对于人力资源部的研究项目,根据上述数据能得出的结论是
(参考公式与数据: .当Χ2>3.841时,有95%的把握说事件A与B有关;当Χ2>6.635时,有99%的把握说事件A与B有关; 当Χ2<3.841时认为事件A与B无关.)( )
A.有99%的把握说事件A与B有关
B.有95%的把握说事件A与B有关
C.有90%的把握说事件A与B有关
D.事件A与B无关
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=ax+b,a>0,且a≠1,x∈R}.
(1)若A∩B=[0,4],求m的值;
(2)若A∩C只有一个子集,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列函数中,奇函数的个数是( )
①f(x)=ln ,②g(x)= (ex+e﹣x),③h(x)=lg( ﹣x),④m(x)= + .
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于四面体ABCD,以下命题中,真命题的序号为(填上所有真命题的序号)
①若AB=AC,BD=CD,E为BC中点,则平面AED⊥平面ABC;
②若AB⊥CD,BC⊥AD,则BD⊥AC;
③若所有棱长都相等,则该四面体的外接球与内切球的半径之比为2:1;
④若以A为端点的三条棱所在直线两两垂直,则A在平面BCD内的射影为△BCD的垂心;
⑤分别作两组相对棱中点的连线,则所得的两条直线异面.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com