【题目】平面直角坐标系xoy中,直线l的参数方程是 (t为参数),以射线ox为极轴建立极坐标系,曲线C的极坐标方程是 +ρ2sin2θ=1.
(1)求曲线C的直角坐标方程;
(2)求直线l与曲线C相交所得的弦AB的长.
科目:高中数学 来源: 题型:
【题目】已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点.
(1)求圆A的方程;
(2)当|MN|=2时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)已知函数f(x)对任意的实数m,n都有:f(m+n)=f(m)+f(n)-1,
且当x>0时,有f(x)>1.
(1)求f(0).
(2)求证:f(x)在R上为增函数.
(3)若f(1)=2,且关于x的不等式f(ax-2)+f(x-x2)<3对任意的x∈[1,+∞)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)= ,g(x)=ax3﹣x2﹣x+b(a,b∈R,a≠0),g(x)的图象C在x=﹣ 处的切线方程是y= .
(1)若求a,b的值,并证明:当x∈(﹣∞,2]时,g(x)的图象C上任意一点都在切线y= 上或在其下方;
(2)求证:当x∈(﹣∞,2]时,f(x)≥g(x).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将两块三角板按图甲方式拼好,其中, , ,
,现将三角板沿折起,使在平面上的射影恰好在上,如图乙.
(1)求证: ;
(2)求证: 为线段中点;
(3)求二面角的大小的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=f(x)在上是增函数,函数y=f(x+2)是偶函数,则( )
A. f(1)<f(2.5)<f(3.5) B. f(3.5)<f(1)<f(2.5)
C. f(3.5)<f(2.5)<f(1) D. f(2.5)<f(1)<f(3.5)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】锐角△ABC中,角A,B,C所对的边分别为a,b,c,且acosB+bcosA= csinC.
(1)求cosC;
(2)若a=6,b=8,求边c的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设全集U=R,集合 ,P={x|﹣1≤x≤4},则(UM)∩P等于( )
A.{x|﹣4≤x≤﹣2}
B.{x|﹣1≤x≤3}
C.{x|3≤x≤4}
D.{x|3<x≤4}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com