精英家教网 > 高中数学 > 题目详情

某数学老师对本校2013届高三学生的高考数学成绩按1:200进行分层抽样抽取了20名学生的成绩,并用茎叶图记录分数如图所示,但部分数据不小心丢失,同时得到如下所示的频率分布表:

分数段(分)
 
[50,70)
 
[70,90)
 
[90,110)
 
[110,130)
 
[130,150)
 
总计
 
频数
 
 
 
 
 
 
 
b
 
 
 
 
 
频率
 
a
 
0.25
 
 
 
 
 
 
 
 
 

(1)求表中a,b的值及分数在[90,100)范围内的学生人数,并估计这次考试全校学生数学成绩的及格率(分数在[90,150)内为及格):
(2)从成绩在[100,130)范围内的学生中随机选4人,
设其中成绩在[100,110)内的人数为X,求X的分布列及数学期望.

(1)a=0.1,b=3;4;65%.
(2)分布列为

X
1
2
3
4
P




E(X)=2.2

解析试题分析:(1)由[50,70)范围的频数,计算出该范围内的频率a,首先计算出[70,90)范围内的频数,然后得出[80,90),即可求出[90,100)范围内的学生人数,计算出[90,100)范围内的学生人数,然后除以20就是及格率.(2)写出随机变量X的所有可能取值,然后计算出相应的概率,列表即可的分布列,最后根据期望值公式计算期望值即可.
试题解析:(1)由茎叶图可知分数在[50,70)范围内的有2人,在[110,130) 范围内的有3人,
∴a= b=3;分数在[70,90)内的人数20×0.25=5,结合茎叶图可得分数在[70,80)内的人数为2,所以分数在[90,100)范围内的学生人数为4,故数学成绩及格的学生为13人,所以估计这次考试全校学生数学成绩的及格率为 ×100%=65%.
(2)由茎叶图可知分数在[100,130)范围内的有7人,分数在[100,110)范围内的有4人,则随机变量X的所有可能取值为1,2,3,4.相应的概率为:P(X=1)== ;P(X=2)== ;P(X=3)==;P(X=4)==.
随机变量X的分布列为

X
1
2
3
4
P




E(X)=1×+2×+3×+4×=2.2
考点:1.茎叶图的含义以及频率和频数的计算;2.随机变量的分布列和数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示

(Ⅰ)求上图中的值;
(Ⅱ)甲队员进行一次射击,求命中环数大于7环的概率(频率当作概率使用);
(Ⅲ)由上图判断甲、乙两名队员中,哪一名队员的射击成绩更稳定(结论不需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了加强中学生实践、创新能力和团队精神的培养,促进教育教学改革,市教育局举办了全市中学生创新知识竞赛,某中学举行了选拔赛,共有150名学生参加,为了了解成绩情况,从中抽取了50名学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成的频率分布表,解答下列问题:

(Ⅰ)完成频率分布表(直接写出结果),并作出频率分布直方图;
(Ⅱ)若成绩在95.5分以上的学生为一等奖,试估计全校获一等奖的人数,现在从全校所有一等奖的同学中随机抽取2名同学代表学校参加决赛,某班共有2名同学荣获一等奖,求该班同学参加决赛的人数恰为1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.

(Ⅰ)求实数的值及参加“掷实心球”项目测试的人数;
(Ⅱ)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;
(Ⅲ)若从此次测试成绩不合格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某年某省有万多文科考生参加高考,除去成绩为分(含分)以上的人与成绩为分(不含分)以下的人,还有约万文科考生的成绩集中在内,其成绩的频率分布如下表所示:

分数段




频率
0.108
0.133
0.161
0.183
分数段




频率
0.193
0.154
0.061
0.007
(1)请估计该次高考成绩在内文科考生的平均分(精确到);
(2)考生A填报志愿后,得知另外有4名同分数考生也填报了该志愿.若该志愿计划录取2人,并在同分数考生中随机录取,求考生A被该志愿录取的概率.
(参考数据:610×0.061+570×0.154+530×0.193+490×0.183+450×0.161+410×0.133=443.93)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
频率分布表

组别
分组
频数
频率
第1组
[50,60)
8
0.16
第2组
[60,70)
a

第3组
[70,80)
20
0.40
第4组
[80,90)

0.08
第5组
[90,100]
2
b
 
合计


频率分布直方图


(Ⅰ)写出的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动,设表示所抽取的2名同学中来自第5组的人数,求的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

日 期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
昼夜温差x(°C)
10
11
13
12
8
6
就诊人数y(个)
22
25
29
26
16
12
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求
线性回归方程,再用被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;
(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x
的线性回归方程
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2
人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理
想?
(参考公式:)

查看答案和解析>>

同步练习册答案