精英家教网 > 高中数学 > 题目详情
16.如图,点P从点O出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,O,P两点连线的距离y与点P走过的路程x的函数关系分别记为y=f(x),y=g(x),定义函数h(x)=$\left\{\begin{array}{l}f(x),f(x)≤g(x)\\ g(x),f(x)>g(x)\end{array}$考查下列结论:
①h(4)=$\sqrt{10}$;
②函数h(x)的图象关于直线x=6对称;
③函数h(x)值域为$[{0,\sqrt{13}}]$;
④函数h(x)增区间为(0,5).
其中正确的结论是①②③.(写出所有正确结论的序号)

分析 由已知条件求出函数的解析式,通过函数值,函数图象的对称性,单调性逐一判断四个命题得答案.

解答 解:由题意可得y=f(x)=$\left\{\begin{array}{l}{x,(0≤x≤4)}\\{\sqrt{{x}^{2}-12x+48},(4<x<8)}\\{-x+12,(8≤x<12)}\end{array}\right.$,
y=g(x)=$\left\{\begin{array}{l}{x,(0≤x≤3)}\\{\sqrt{{x}^{2}-6x+18},(3<x≤6)}\\{\sqrt{{x}^{2}-24x+153},(6<x<9)}\\{-x+12,(9≤x<12)}\end{array}\right.$,
①∵函数h(x)=$\left\{\begin{array}{l}{f(x),f(x)≤g(x)}\\{g(x),f(x)>g(x)}\end{array}\right.$,f(4)=4,g(4)=$\sqrt{10}$,
∴h(4)=$\sqrt{10}$,故①正确;                 
②函数h(x)的图象关于直线x=6对称;
∵两个几何图形是正三角形与正方形,∴函数h(x)的图象关于直线x=6对称,故②正确;
③∵f(x)∈[0,4],g(x)∈[0,$3\sqrt{2}$],
由$\sqrt{{x}^{2}-12x+48}$=$\sqrt{{x}^{2}-6x+18}$,解得x=5时,f(x)=g(x),此时g(5)=$\sqrt{13}$,
∴函数h(x)值域为[0,$\sqrt{13}$],故③正确;
④∵f(x)=$\left\{\begin{array}{l}{x,(0≤x≤4)}\\{\sqrt{{x}^{2}-12x+48},(4<x<8)}\\{-x+12,(8≤x<12)}\end{array}\right.$,x∈(6,8),f(x)是增函数,并且 g(x)≥f(x),
∴函数h(x)增区间为(0,5),(6,8).故④不正确.
综上①②③正确.

点评 本题考查命题的真假判断与应用,考查简单的建模思想方法,考查分段函数的图象与性质,属中高档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.由两个简单几何体构成的组合几何体的三视图中,正视图和俯视图如右图所示,其中正视图中等腰三角形的高为3,俯视图中的三角形均为等腰直角三角形,半圆直径为2,则该几何体的体积为(  )
A.$\frac{π}{2}+1$B.π+1C.$\frac{π}{2}+2$D.π+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用二分法求方程2x+x-8=0的一个实数解(精确度0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆$\frac{{x}^{2}}{3{m}^{2}}$+$\frac{{y}^{2}}{5{n}^{2}}$=1和双曲线$\frac{{x}^{2}}{2{m}^{2}}$-$\frac{{y}^{2}}{3{n}^{2}}$=1有公共的焦点.
(1)求双曲线的渐近线方程;
(2)直线l过右焦点且垂直于x轴,若直线l与双曲线的渐近线围成的三角形的面积为$\frac{\sqrt{3}}{4}$,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=a{x^3}+bx+\frac{c}{x}+4$,满足f(lg2015)=3,则$f(lg\frac{1}{2015})$的值为(  )
A.-3B.3C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在平面直角坐标系xOy中,点A(-2,6)关于直线3x-4y+5=0的对称点的坐标为(4,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.Sn为数列{an}的前n项和,已知an>2,且an2+4n=4Sn+1.
(1)求证:{an}为等差数列;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知集合A={x∈Z|0<x≤3},则集合A的非空子集个数为(  )个.
A.15B.16C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若函数f(x)为定义域D上的单调函数,且存在区间[a,b]⊆D,使得当x∈[a,b]时,函数f(x)的值域恰好为[a,b],则称函数f(x)为D上的“正函数”,区间[a,b]为函数f(x)的“正区间”.
(1)试判断函数f(x)=$\frac{3}{4}$x2-3x+4是否为“正函数”?若是“正函数”,求函数f(x)的“正区间”;若不是“正函数”,请说明理由;
(2)设命题p:f(x)=$\sqrt{x-\frac{8}{9}}$+m是“正函数”;命题q:g(x)=x2-m(x<0)是“正函数”.若p∧q是真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案