(本题12分)
已知函数。
(1)求的最小正周期;
(2)若将的图象按向量=(,0)平移得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值。
(I)的最小正周期为;
(Ⅱ)取得最小值—1.
【解析】
试题分析:(1)利用三角函数的恒等变换化简函数解析式,从而求得函数f(x)的最小正周期.(2)将的图象按向量=(,0)平移得到函数g(x)的图象,结合三角函数的性质得到最值。
解:(I)…………………2分
= ………………………………4分
所以的最小正周期为 ……………………………5分
(Ⅱ)∵将将的图象按向量=(,0)平移,得到函数的图象.
∴…………………9分
∵ …………………………10分
∴当取得最大值2. ……11分
当取得最小值—1.…12分
考点:本试题主要考查了三角函数的恒等变换及化简求值,正弦函数的定义域和值域,周期性和单调性,以及三角函数的图象的变换,属于中档题。
点评:解题的关键是对函数解析式的化简,以及对正弦函数的基础知识的熟练记忆。
科目:高中数学 来源:2012-2013学年福建省高三第一次月考理科数学试卷(解析版) 题型:解答题
(本题12分)已知函数的图像关于原点对称,并且当时,,试求在上的表达式,并画出它的图像,根据图像写出它的单调区间。
查看答案和解析>>
科目:高中数学 来源:2010年浙江省杭州市七校高一上学期期中考试数学试卷 题型:解答题
(本题12分)已知函数.
(1)当时,求函数的单调递减区间;
(2)当时,在上恒大于0,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:陕西省2009-2010学年度第二学期期末考试高二数学(文科)试题 题型:解答题
(本题12分)已知关于的不等式,其中.
(Ⅰ)当变化时,试求不等式的解集 ;
(Ⅱ)对于不等式的解集,若满足(其中为整数集). 试探究集合能否为有限集?若能,求出使得集合中元素个数最少的的所有取值,并用列举法表示集合;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com