精英家教网 > 高中数学 > 题目详情
过抛物线y2=8x的焦点F作倾斜角为135°的直线交抛物线于A,B两点,则弦AB的长为(  )
A.4B.8C.12D.16
D
由y2=8x得其焦点F(2,0).
则过抛物线y2=8x的焦点F且倾斜角为135°的直线方程为y=﹣1×(x﹣2),即x+y﹣2=0.
,得x2﹣12x+4=0.
设A(x1,y1),(x2,y2
则x1+x2=12,x1x2=4.
所以|AB|===
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,短轴的一个端点的距离等于焦距.
(1)求椭圆的方程;
(2)过点的直线与椭圆交于不同的两点,是否存在直线,使得△与△的面积比值为?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点,且,试判断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为,且||=2,
点(1,)在该椭圆上.
(1)求椭圆C的方程;
(2)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为抛物线的焦点,过且倾斜角为的直线交,两点,则 ( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O,椭圆+=1与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程.
(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在,请求出Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,过抛物线y2=2px (p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线方程为(  )

A.y2=9x           B.y2=6x
C.y2=3x           D.y2x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线的一条渐近线与圆至多有一个交点,则双曲线离心
率的取值范围是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点是双曲线的一个焦点,则正数等于(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案