(本小题满分12分)
已知:如图,在四棱锥中,四边形为正方形,,且,为中点.
(1)证明://平面;
(2)证明:平面平面;
(3)求二面角的正弦值.
(1) 结交于点,连结,那么根据中位线性质可知// ,那么结合线面平行的判定定理来得到。
(2)建立空间直角坐标系,然后结合空间向量的平面的法向量,借助于法向量的垂直来证明面面垂直。
(3)
【解析】
试题分析:解:(1)
证明:连结交于点,连结 ……………………1分
为中点,为中点,
// ……………………2分
平面,平面, ………3分
∴ //平面.
(2)证明:
⊥平面
平面,
. …………4分
又在正方形中且, …5分
∴平面. ……………………6分
又平面,
∴平面平面. ……………………7分
(3)如图,以为坐标原点,所在直线分别为轴,轴,轴建立空
间直角坐标系.
由可知的坐标分别为
(0, 0, 0), (2, 0, 0),(2, 2, 0),
(0, 2, 0), (0, 0, 2), (0, 1, 1) .………9分
平面,∴是平面的法向量,=(0, 0, 2).
设平面的法向量为
, ,
则 即
∴
∴ 令,则. ………………11分
∴,
二面角的正弦值为 …………………12分
考点:考查了线面的关系,面面垂直二面角的知识。
点评:解决证明试题,一般要运用线面平行的判定定理以及面面垂直的判定定理,来分析得到,而对于求解二面角一般可以运用定义法,或者是三垂线定理法,以及向量法来表示得到,属于中档题。
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com