精英家教网 > 高中数学 > 题目详情

【题目】已知函数,(abR)为奇函数.

1)求b值;

2)当a=2时,存在x0[14]使得不等式fx0t成立,求实数t的取值范围;

3)当a≥1时,求证:函数gx=f2x)﹣ccR)在区间(﹣,﹣1]上至多有一个零点.

【答案】1b=0;(2t≥2;(3)证明见解析

【解析】

1)根据函数奇偶性的定义和性质建立方程关系即可得到结论;

2)根据函数单调性和最值的关系进行求解即可;

3)根据函数单调性的定义先判断函数的单调性,利用函数单调性和函数零点之间的关系进行证明.

解:(1函数为奇函数,

,即

,即

2)当时,

函数均单调递增,

函数单调递增,

时,

存在使得不等式成立,

3)证明:

,即

,又

,即

函数单调递减,

,结合函数图象知函数上至多有一个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:Cx=若不建隔热层,每年能源消耗费用为8万元。设fx)为隔热层建造费用与20年的能源消耗费用之和。

)求k的值及f(x)的表达式。

)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为为参数),以平面直角坐标系的原点O为极点,x轴正半轴为极轴建立极坐标系.

1)求曲线C的极坐标方程;

2)过点,倾斜角为的直线l与曲线C相交于MN两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P-ABCD中,底面ABCD为直角梯形,平面ABCD,且.

1)求证:平面PBD

(2)若PB与平面ABCD所成的角为,求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在等腰梯形ABCD中,,垂足为E沿EC折起到的位置,如图2所示,使平面平面ABCE.

1)连结BE,证明:平面

2)在棱上是否存在点G,使得平面,若存在,直接指出点G的位置不必说明理由,并求出此时三棱锥的体积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:

20以下

[2030

[3040

[4050

[5060

[6070]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

1)现随机抽取1名顾客,试估计该顾客年龄在[3050)且未使用自由购的概率;

2)从被抽取的年龄在[5070]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[5060)的概率;

3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若动点到定点与定直线的距离之和为

1)求点的轨迹方程,并在答题卡所示位置画出方程的曲线草图;

2)(理)记(1)得到的轨迹为曲线,问曲线上关于点对称的不同点有几对?请说明理由.

3)(文)记(1)得到的轨迹为曲线,若曲线上恰有三对不同的点关于点对称,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人上午7时乘船出发,以匀速海里/小时港前往相距50海里的港,然后乘汽车以匀速千米/小时()自港前往相距千米的市,计划当天下午4到9时到达市.设乘船和汽车的所要的时间分别为小时,如果所需要的经费 (单位:元)

(1)试用含有的代数式表示

(2)要使得所需经费最少,求的值,并求出此时的费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线由两个椭圆和椭圆组成,当成等比数列时,称曲线猫眼曲线”.

1)若猫眼曲线过点,且的公比为,求猫眼曲线的方程;

2)对于题(1)中的求猫眼曲线,任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为M,交椭圆所得弦的中点为N,求证:为与无关的定值;

3)若斜率为的直线为椭圆的切线,且交椭圆于点为椭圆上的任意一点(点与点不重合),求面积的最大值.

查看答案和解析>>

同步练习册答案