精英家教网 > 高中数学 > 题目详情

若曲线C1:y2=2px(p>0)的焦点F恰好是曲线数学公式的右焦点,且C1与C2交点的连线过点F,则曲线C2的离心率为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:先根据抛物线方程得到焦点坐标和交点坐标,代入双曲线方程,结合a,b,c的关系得到关于离心率e的方程,进而可求得e.
解答:由题意,不妨得出C1与C2交点为( ,p),
代入双曲线方程得:
+=1,
∵曲线C1:y2=2px(p>0)的焦点F恰好是曲线的右焦点,
=c
+4 =1,
根据b2=c2-a2,化简得 c4-6a2c2+a4=0
∴e4-6e2+1=0
e2=3+2 =(1+2
∴e=+1
故选B.
点评:本小题主要考查双曲线和抛物线的性质、圆锥曲线的共同特征等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点P在曲线C1:y2=8x上,点Q在曲线C:(x-2)2+y2=1上,点O为坐标原点,则
|PO|
|PQ|
的最大值是
4
7
7
4
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分
(1)选修4-2:矩阵与变换
变换T是将平面上每个点M(x,y)的横坐标乘2,纵坐标乘4,变到点M′(2x,4y).
(Ⅰ)求变换T的矩阵;
(Ⅱ)圆C:x2+y2=1在变换T的作用下变成了什么图形?
(2)选修4-4:坐标系与参数方程
已知极点与原点重合,极轴与x轴的正半轴重合.若曲线C1的极坐标方程为:5ρ2-3ρ2cos2θ-8=0,直线?的参数方程为:
x=1-
3
t
y=t
(t为参数).
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)直线?上有一定点P(1,0),曲线C1与?交于M,N两点,求|PM|.|PN|的值.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求证:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(Ⅱ)求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex(e是自然对数的底数)的图象为曲线C1,函数g(x)=ax(a≠0)的图象为曲线C2
(1)若曲线C1与C2没有公共点,求满足条件的实数a组成的集合A;
(2)当a∈A时,平移曲线C2得到曲线C3,使得曲线C3与曲线C1相交于不同的两点,P1(x1,y1),P2(x2,y2),试用x1,x2表示a;
(3)在(2)的条件下试比较a与f/(
x1+x22
)
的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,曲线C1x2+y2-ax+2ay+a2-a-1=0
(1)若曲线C1表示圆,求a的取值范围;
(2)当a=2时,求C1所表示曲线关于直线2y+1=0的对称曲线C2的方程;
(3)在第2题条件下,是否存在整数m,使得曲线C1与曲线C2上均恰有两点到直线0≤x≤1时,的距离等于1,若存在,求出m值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•深圳二模)若曲线C1:y2=2px(p>0)的焦点F恰好是曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦点,且C1与C2交点的连线过点F,则曲线C2的离心率为(  )

查看答案和解析>>

同步练习册答案