精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点为.

(1)求以为焦点,原点为顶点的抛物线方程;

(2)若椭圆上点满足,求的纵坐标

(3)设,若椭圆上存在两个不同点满足,证明:直线过定点,并求该定点的坐标.

【答案】(1);(2);(3)直线过定点.

【解析】

(1)由椭圆方程可求出左焦点的坐标,由此可求出抛物线的方程;

(2)根据椭圆定义以及余弦定理可求出,再根据面积关系列式可求得结果;

(3)联立直线,与抛物线方程,消去得到关于的一元二次方程,根据韦达定理得到两根之和与两根之积,再根据向量相乘为0列式可解得,从而可得.

(1)在椭圆,,,所以,

所以,所以,

所以在抛物线中,所以,

所以以为焦点,原点为顶点的抛物线方程为:,即.

(2)设,,,

在三角形中,,

由余弦定理得:,

所以得,

,又,

所以,

所以,

,

解得:,所以;

(3)直线的斜率显然存在,设直线的方程为:,

联立 ,消去并整理得:,

,,

,,

,,

因为,

所以,

所以,

所以,

所以,

化简得:,

因为,所以,

所以直线 :过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若不等式的解集为,求a的值;

(2)在(1)的条件下,若存在,使,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意实数x和任意,恒有,则实数a的取值范围为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海域有两个岛屿,岛在岛正东4海里处,经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发出过鱼群。以所在直线为轴,的垂直平分线为轴建立平面直角坐标系.

1)求曲线的标准方程;

2)某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号(传播速度相同),两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置(即点的坐标)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)所示,五边形中,分别是线段的中点,且,现沿翻折,使得,得到的图形如图(2)所示.

图(1) 图(2)

(1)证明:平面

(2)若平面与平面所成角的平面角的余弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于曲线所在的平面上的定点,若存在以点为顶点的角,使得对于曲线上的任意两个不同的点恒成立,则称角为曲线点视角,并称其中最小的点视角为曲线相对于点点确视角”.已知曲线和圆轴上一点

1)对于坐标原点,写出曲线点确视角的大小;

2)若在曲线上,求的最小值;

3)若曲线和圆点确视角相等,求点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.

(1) 求抛物线的方程;

(2) 当点为直线上的定点时,求直线的方程;

(3) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)当b=0时,求函数的极小值;

2)若已知b>1且函数与直线y=-x相切,求b的值;

3)在(2)的条件下,函数与直线y=-x+m有三个公共点,求m的取值范围.(直接写出答案)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆的短轴为直径的圆与直线相切.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆过右焦点的弦为、过原点的弦为,若,求证:为定值.

查看答案和解析>>

同步练习册答案