精英家教网 > 高中数学 > 题目详情
7.如图,在平行四边形ABCD中,P,Q分别是BC和CD的中点.
(1)若AB=2,AD=1,∠BAD=60°,求$\overrightarrow{AB}$•$\overrightarrow{AC}$及cos∠BAC的余弦值;
(2)若$\overrightarrow{AC}$=λ$\overrightarrow{AP}$+$μ\overrightarrow{BQ}$,求λ+μ的值.

分析 (1)由已知中AB=2,AD=1,∠BAD=60°,代入向量数量积公式,可得$\overrightarrow{AB}$•$\overrightarrow{AC}$,求出|$\overrightarrow{AC}$|,代入cos∠BAC=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|•\left|\overrightarrow{AC}\right|}$可得cos∠BAC的余弦值;
(2)若$\overrightarrow{AC}$=λ$\overrightarrow{AP}$+$μ\overrightarrow{BQ}$,则$\left\{\begin{array}{l}λ-\frac{1}{2}μ=1\\ \frac{1}{2}λ+μ=1\end{array}\right.$,解得答案.

解答 解:(1)∵平行四边形ABCD中,AB=2,AD=1,∠BAD=60°,
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\overrightarrow{AB}$•($\overrightarrow{AB}$+$\overrightarrow{AD}$)=$\overrightarrow{AB}$2+$\overrightarrow{AB}$•$\overrightarrow{AD}$=22+2×1×cos60°=5,
|$\overrightarrow{AC}$|2=$\overrightarrow{AC}$2=($\overrightarrow{AB}$+$\overrightarrow{AD}$)2=$\overrightarrow{AB}$2+2$\overrightarrow{AB}$•$\overrightarrow{AD}$+$\overrightarrow{AD}$2=22+2×2×1×cos60°+1=7,
∴|$\overrightarrow{AC}$|=$\sqrt{7}$,
cos∠BAC=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|•\left|\overrightarrow{AC}\right|}$=$\frac{5}{2•\sqrt{7}}$=$\frac{5\sqrt{7}}{14}$;
(2)∵P,Q分别是BC和CD的中点.
∴$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$,$\overrightarrow{BQ}$=$\overrightarrow{AD}$-$\frac{1}{2}$$\overrightarrow{AB}$,
∵$\overrightarrow{AC}$=λ$\overrightarrow{AP}$+$μ\overrightarrow{BQ}$,
∴$\overrightarrow{AB}$+$\overrightarrow{AD}$=λ($\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$)+μ($\overrightarrow{AD}$-$\frac{1}{2}$$\overrightarrow{AB}$),
∴$\left\{\begin{array}{l}λ-\frac{1}{2}μ=1\\ \frac{1}{2}λ+μ=1\end{array}\right.$,
解得:$\left\{\begin{array}{l}λ=\frac{6}{5}\\ μ=\frac{2}{5}\end{array}\right.$,
∴λ+μ=$\frac{8}{5}$

点评 本题考查的知识点是向量在几何中的应用,向量的数量积,向量的夹角,向量的模,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则z=2x-y的最小值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=|sinx|•cosx,则下列说法正确的是(  )
A.f(x)的图象关于直线x=$\frac{π}{2}$对称B.f(x)的周期为π
C.若|f(x1)|=|f(x2)|,则x1=x2+2kπ(k∈Z)D.f(x)在区间[$\frac{π}{4}$,$\frac{3π}{4}$]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.满足{1}?A⊆{1,2,3,4}的集合A的个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若α∈($\frac{3π}{2}$,2π),化简$\sqrt{1-sinα}$+$\sqrt{1+sinα}$=$-2cos\frac{α}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|x2-x-2>0},B={x||x|<3},则A∩B=(  )
A.{x|-3<x<-1}B.{x|2<x<3}C.{x|-3<x<-1或2<x<3}D.{x|-3<x<-2或1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在直角梯形ABCD中,AD∥BC,$AB=1,AD=\sqrt{3}$,AB⊥BC,CD⊥BD,如图(1)把△ABD沿BD翻折,使得平面A'BD⊥平面BCD,如图(2).则三棱锥A'-BDC的体积为$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C1:y=ax2上点P处的切线为l1,曲线C2:y=bx3上点A(1,b)处的切线为l2,且l1⊥l2,垂足M(2,2),求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知方程x2+ax+b=0.
(1)若方程的解集只有一个元素,求实数a,b满足的关系式;
(2)若方程的解集有两个元素分别为1,3,求实数a,b的值.

查看答案和解析>>

同步练习册答案