【题目】已知函数f(x)=
(e为自然对数的底数),则f(e)=________,函数y=f(f(x))-1的零点个数为________.
【答案】 1 3
【解析】f(e)=lne=1;
函数y=f(f(x))-1的零点个数为方程f(f(x))=1的根的个数,则
①由ln x=1(x≥1),得x=e,于是f(x)=e,则由ln x=e(x≥1),得x=ee;或由ef(|x|+1)=e(x<1),得f(|x|+1)=1,所以ln(|x|+1)=1,解得x=e-1(舍去)或x=1-e;
②由ef(|x|+1)=1(x<1),得f(|x|+1)=0,所以ln(|x|+1)=0,解得x=0,所以f(x)=0,只有ln x=0(x≥1),解得x=1.
综上可知函数y=f(f(x))-1有x=ee,1-e,1共3个零点.
答案:1 3.
科目:高中数学 来源: 题型:
【题目】如图所示,正方体的棱长为, , 分别是棱, 的中点,过直线, 的平面分别与棱, 交于, ,设, ,给出以下四个命题:
①四边形为平行四边形;
②若四边形面积, ,则有最小值;
③若四棱锥的体积, ,则是常函数;
④若多面体的体积, ,则为单调函数.
其中假命题为( ).
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某校甲、乙、丙三个年级的学生志愿者人数分别是240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动。
(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作,求事件M“抽取的2名同学来自同一年级”发生的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取次.记录如下:
甲: , , , , , , ,
乙: , , , , , , ,
()用茎叶图表示这两组数据.
()现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为派哪位学生参加合适?请说明理由.
()若将频率视为概率,对甲同学在今后的三次数学竞赛成绩进行预测,记这次成绩中高于分的次数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求y=f(x)的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,圆:,动圆与圆外切并且与圆内切,圆心轨迹为曲线.
(1)求曲线的方程;
(2)若是曲线上关于轴对称的两点,点,直线交曲线
于另一点,求证:直线过定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求数列{an},{bn}的通项公式;
(2)设数列{cn}满足,数列{cn}的前n项和为Tn,若不等式(-1)nλ<Tn+对一切n∈N*恒成立,求实数λ的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com