精英家教网 > 高中数学 > 题目详情
10.已知命题p:实数x满足不等式组$\left\{\begin{array}{l}2<{2^x}<8\\{x^2}-6x+8<0\end{array}\right.$命题q:实数x满足不等式(x-1)(x+a-12)≤0(其中a∈R).
(Ⅰ)解命题p中的不等式组;
(Ⅱ)若p是q的充分条件,求a的取值范围.

分析 (Ⅰ)由2<2x<8,利用指数函数的单调性解得x范围,利用一元二次不等式解法可得x2-6x+8<0的解集,即可该不等式组的解集.
(II)p是q的充分条件,2<x<3使关于x的不等式(x-1)(x+a-12)≤0恒成立,即{ x|2<x<3}⊆{x|(x-1)(x+a-12)≤0},对a分类讨论即可得出.

解答 解:(Ⅰ)由2<2x<8,解得1<x<3,
由x2-6x+8<0,解得2<x<4,
∴该不等式组的解集为{x|2<x<3},
(Ⅱ)∵p是q的充分条件,
∴2<x<3使关于x的不等式(x-1)(x+a-12)≤0恒成立,
即{ x|2<x<3}⊆{x|(x-1)(x+a-12)≤0},(*)
(1)当1≥12-a,即a≥11时,不等式(x-1)(x+a-12)≤0的解为12-a≤x≤1,不满足(*),
(2)当1<12-a,即a<11时,不等式(x-1)(x+a-12)≤0的解为1≤x≤12-a,
于是有3≤12-a,解得a≤9,
故a的范围是(-∞,9].

点评 本题考查了一元二次不等式的解法、充要条件的判定,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x+1|+|x-1|.
(Ⅰ)判断并证明函数f(x)的奇偶性;
(Ⅱ)作出函数f(x)的图象,并求其单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a、b、c分别是角A、B、C的对边,且$\frac{cosB}{cosC}=-\frac{b}{2a+c}$.
(1)求角B的大小;
(2)若b=3,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列几个命题:
①方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0;
②函数y=$\sqrt{{x}^{2}-1}$+$\sqrt{1-{x}^{2}}$是偶函数,但不是奇函数;
③设函数y=f(x)定义域为R,则函数y=f(1-x)与y=f(x-1)的图象关于y轴对称;
④一条曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
其中正确的是(  )
A.(1)(2)B.(1)(4)C.(3)(4)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设 $f(x)=\left\{\begin{array}{l}x-2\\ f[{f(x+6)}]\end{array}\right.\begin{array}{l}({x≥10})\\({x<10})\end{array}$,则f(5)的值为11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,M、N分别是AA1、AC的中点
(1)求证:MN∥平面BCD1A1
(2)求证:MN⊥C1D.
(3)求V${\;}_{D-MN{C}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x,x>0}\\{0,x=0}\\{{x^2}+mx,x<0}\end{array}}\right.$为奇函数.
(Ⅰ)求f(-1)以及实数m的值;
(Ⅱ)写出函数f(x)的单调递增区间;
(Ⅲ)若f(a)=1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若在△ABC中,∠A=60°,b=1,S△ABC=$\frac{{\sqrt{3}}}{2}$,则△ABC外接圆的半径R=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列函数的最大值
(1)y=x(1-2x)(0<x<$\frac{1}{2}$);
(2)y=x$\sqrt{3{-x}^{2}}$(0<x<$\sqrt{3}$).

查看答案和解析>>

同步练习册答案