精英家教网 > 高中数学 > 题目详情
2.如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,P是A1B上一动点,则AP+D1P的最小值为(  )
A.2B.$\frac{{\sqrt{6}+\sqrt{2}}}{2}$C.$2+\sqrt{2}$D.$\sqrt{2+\sqrt{2}}$

分析 把对角面A1C绕A1B旋转,使其与△AA1B在同一平面上,连接AD1并求出,根据平面内两点之间线段最短,可知就是最小值.

解答 解:把对角面A1C绕A1B旋转,使其与△AA1B在同一平面上,连接AD1
则在△AA1D中,AD1=$\sqrt{1+1-2×1×1×cos135°}$=$\sqrt{2+\sqrt{2}}$为所求的最小值.
故选:D.

点评 本题的考点是点、线、面间的距离计算,主要考查考查棱柱的结构特征,考查平面内两点之间线段,最短考查计算能力,空间想象能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数y=$\frac{{x}^{2}-4x+13}{x-1}$(x∈[2,5])的值域为[2$\sqrt{10}$-2,9].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某研究机构为了研究人的脚的大小与身高之间的关系,随机抽测了20人,得到如下数据:
序号12345678910
身高x(cm)192164172177176159171166182166
脚长(码)48384043443740494639
序号11121314151617181920
身高x(cm)169178167174168179165170162170
脚长y(码)42414043404438423941
(Ⅰ)若“身高大于175厘米”的为“高个”,“身高不超过175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长不超过42码”的为“非大脚”.
请根据上表数据完成下面的2×2列联表:
高个非高个合计
大脚
非大脚12
合计20
(Ⅱ)根据(1)中表格的数据,你能否有99%的把握认为脚的大小与身高有关系?
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求下列极限:
(1)$\underset{lim}{n→∞}$(1$-\frac{1}{{2}^{2}}$)(1$-\frac{1}{{3}^{2}}$)…(1$-\frac{1}{{n}^{2}}$);
(2)$\underset{lim}{n→∞}$n2($\frac{k}{n}$$-\frac{1}{n+1}$$-\frac{1}{n+2}$-…$-\frac{1}{n+k}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,它满足第n行首尾两数均为n,则第7行第2个数是22.第n行(n≥2)第2个数是$\frac{{n}^{2}-n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|x-a|.
(Ⅰ)当a=1时,解不等式f(x)+f(-x)≥4;
(Ⅱ)证明:f(x)+f(-$\frac{1}{x}$)≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正四面棱锥P-ABCD的侧棱长为2$\sqrt{3}$,侧面等腰三角形的顶角为30°,则从A点出发环绕面一周后回到A点的最短路程为(  )
A.2$\sqrt{6}$B.2$\sqrt{3}$C.$\sqrt{6}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把函数y=ex的图象按向量$\overrightarrow{a}$=(2,0)平移,得到y=f(x)的图象,则f(x)=(  )
A.ex+2B.ex-2C.ex+2D.ex-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)是R上的奇函数,且x>0时,f(x)=-x2+2x.
(1)求f(x)的解析式;
(2)在如图的直角坐标系中画出函数求f(x)的图象,并求不等式f(x)<0的解集.

查看答案和解析>>

同步练习册答案