打开“几何画板”软件进行如下操作:
①用画图工具在工作区画一个大小适中的图C;
②用取点工具分别在圆C上和圆C外各取一个点A,B;
③用构造菜单下对应命令作出线段AB的垂直平分线;
④作出直线AC。
设直线AC与直线相交于点P,当点B为定点,点A在圆C上运动时,点P的轨迹是( )
A、椭圆 B、双曲线 C、抛物线 D、圆
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年福建省毕业班质量检查文科数学试卷(解析版) 题型:解答题
某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.
(Ⅰ)拖动点,发现当时,,试求抛物线的方程;
(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点、,构造直线、分别交准线于、两点,构造直线、.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“与不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
查看答案和解析>>
科目:高中数学 来源: 题型:
某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.
(Ⅰ)拖动点,发现当时,,试求抛物线的方程;
(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点、,构造直线、分别交准线于、两点,构造直线、.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“与不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com