精英家教网 > 高中数学 > 题目详情

【题目】我们知道: ,已知数列 则数列的通项公式__________

【答案】

【解析】可得所以数列{为以为公比,以为首项的等比数列,所以 故答案为

【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:(1等差数列、等比数列(先根据条件判定出数列是等差、等比数数列);(2)累加法,相邻两项的差成等求和的数列可利用累加求通项公式;(3)累乘法,相邻两项的商是能求出积的特殊数列时用累乘法求通项;(4)构造法,形如的递推数列求通项往往用构造法,即将利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得出的通项公式本题中,利用方法4通过构造数列{为等比数列求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某学校的名男生中随机抽取名测量身高,被测学生身高全部介于之间,将测量结果按如下方式分成八组:第一组,第二组第八组,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人。

)求第七组的频率;

)估计该校的名男生的身高的中位数以及身高在以上(含)的人数;

)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件,事件,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个不相等的非零向量 ,两组向量 均由2个 和3个 排列而成,记S= ,Smin表示S所有可能取值中的最小值,则下列命题中
1)S有5个不同的值;(2)若 则Smin与| |无关;(3)若 则Smin与| |无关;(4)若| |>4| |,则Smin>0;(5)若| |=2| |,Smin=8| |2 , 则 的夹角为 .正确的是(
A.(1)(2)
B.(2)(4)
C.(3)(5)
D.(1)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)对任意的,恒有,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△A1B1C1的三内角余弦值分别等于△A2B2C2三内角的正弦值,那么两个三角形六个内角中的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax-1(a>0且a≠1).

(1)若函数y=f(x)的图象经过点P(3,4),求a的值;

(2)当a变化时,比较f(lg)与f(-2.1)的大小,并写出比较过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线:y=k (x+2)与圆O:相交于A、B两点,O是坐标原点,ABO的面积为S.

(1)试将S表示成的函数S(k),并求出它的定义域;

2)求S的最大值,并求取得最大值时k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:A={x|2x2﹣3ax+a2<0},q:B={x|x2+3x﹣10≤0}.
(1)求A;
(2)当a<0时,若¬p是¬q的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某几何体的三视图都是直角三角形,则该几何体的体积等于__________

【答案】10

【解析】几何体为三棱锥,(高为4底面为直角三角形),体积为

点睛:空间几何体体积问题的常见类型及解题策略

(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.

(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.

(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.

型】填空
束】
15

【题目】如图:在三棱锥中,已知底面是以为斜边的等腰直角三角形,且侧棱长,则三棱锥的外接球的表面积等于__________

查看答案和解析>>

同步练习册答案