精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-m|-2|x-1|(m∈R),解不等式f(x)≥0.
考点:带绝对值的函数
专题:不等式的解法及应用
分析:将不等式化简讨论x与m的关系,得到不等式的解集.
解答: 解:因为函数f(x)=|x-m|-2|x-1|(m∈R),f(x)≥0,
所以|x-m|-2|x-1|≥0,
即|x-m|≥2|x-1|,
当x=m=1时,不等式为|x-1|≤0,解集为{1};
当x>m>1时,x-m≥2x-2,解得x≤2-m<1,矛盾,此时解集为∅;
当1<x<m时,不等式为m-x≥2x-2,解得x≤
m+2
3
,所以不等式的解集为{x|1<x<
m+2
3
};
当m<x<1时,不等式为x-m≥2-2x,解得x≥
m+2
3
与x<1矛盾,所以此时不等式解集为∅;
点评:本题考查了绝对值不等式的解法,关键是正确分类,恰当讨论,做到不重不漏.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}为等差数列中,a1+a2+…+a10=15,a11+a12+…+a20=20,则a21+a22+…+a30=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,给出下列四个命题:
①若f(x)是奇函数,则f(x)•f(-x)≥0;
②若f(x)是偶函数,则f(x)•f(-x)≥0;
③若f(x)是增函数,则f(x)≥f(-x);
④若f(x)是增函数,则f(|x|)≥f(x).
其中正确的是
 
.(将你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(x+3)+
8
9
(a>0,a≠1)的图象恒过定点A,若点A也在函数f(x)=3x+b的图象上,则 b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2ln(ax)(a>0).
(1)a=e时,求f(x)在x=1处的切线方程;
(2)若f′(x)≤x2对任意的x>0恒成立,求实数a的取值范围;
(3)当a=1时,设函数g(x)=
f(x)
x
,若x1,x2∈(
1
e
,1),x1+x2<1,求证:x1•x2<(x1+x24

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a•3xx≤0
1
x
-x
x>0
,若关于x的方程f[f(x)]=0有且仅有一解,则实数a的取值范围是(  )
A、(-∞,0)
B、(-∞,0)∪(0,1)
C、(0,1)
D、(0,1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(x+1),g(x)=2lg(2x+t)(t为参数).
(1)写出函数f(x)的定义域和值域;
(2)当x∈[0,1]时,求函数g(x)解析式中参数t的取值范围;
(3)当x∈[0,1]时,如果f(x)≤g(x),求参数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的奇函数,其图象关于直线x=1对称.当x∈[-1,1]时,f(x)=x,求当x∈[-3,-1]时,f(x)的解析式和f(-4.5)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=log2
x
4
•log2
x
8
(x∈[
1
4
,8]的最大值和最小值并求此时x的值.

查看答案和解析>>

同步练习册答案