精英家教网 > 高中数学 > 题目详情
3.△ABC的内角A,B,C的对边分别为a,b,c,若acosC+ccosA=bsinB,则△ABC的形状一定是(  )
A.等边三角形B.直角三角形
C.钝角三角形D.不含60°角的等腰三角形

分析 由已知以及正弦定理可知sinAcosC+sinCcosA=sin2B,化简可得sinB=sin2B,结合B的范围可求B=$\frac{π}{2}$,从而得解.

解答 解:由acosC+ccosA=bsinB以及正弦定理可知,
sinAcosC+sinCcosA=sin2B,
即sin(A+C)=sinB=sin2B.
∵0<B<π,sinB≠0,
∴sinB=1,B=$\frac{π}{2}$.
所以三角形为直角三角形.
故选:B.

点评 本题主要考查了正弦定理,两角和的正弦函数公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.从甲、乙、丙3名候选学生中选2名作为青年志愿者,则甲被选中的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.奇函数f(x)满足①在(-∞,0)内单调递增,②f(2)=0,则不等式(x-1)f(x-1)>0的解集为(  )
A.(-∞,-2)∪(0,2)B.(-3,-1)∪(1,3)C.(-2,2)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夹角为θ,|$\overrightarrow{OA}$|=2,|$\overrightarrow{OB}$|=1,$\overrightarrow{OP}$=t$\overrightarrow{OA}$,$\overrightarrow{OQ}$=(1-t)$\overrightarrow{OB}$.
(1)当θ=$\frac{π}{3}$时,若△OPQ为直角三角形,其中∠P=$\frac{π}{2}$,求t的值;
(2)令f(t)=|$\overrightarrow{PQ}$|,若f(t)在t=t0(0<t0<$\frac{1}{5}$)时取得最小值,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=(sinx+cosx)2+cos2x.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)求f(x)在区间[-$\frac{π}{2}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解关于x的不等式:mx2-(4m+1)x+4>0(m≥0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,若sin(B-C)=1+2sin(A+B)cos(A+C),则△ABC的形状一定是(  )
A.等边三角形B.直角三角形
C.钝角三角形D.不含60°的等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=ax(a>0且a≠1)在区间[0,1]的最大值与最小值之和为3,则函数f(x)=a1-2x,x∈[-3,3]满足:①f(x)是奇函数;②f(x)是增函数;③f(x)是减函数;④f(x)有最小值$\frac{1}{32}$,其中正确的序号是(  )
A.③④B.②④C.①③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.cos21°+cos22°+cos23°+…+cos290°的值为(  )
A.90B.45C.44.5D.44

查看答案和解析>>

同步练习册答案