【题目】已知正方体,是底面对角线的交点.
求证:(1);
(2)CO∥面.
【答案】(1)见解析(2)见解析
【解析】
(1)利用线面垂直的性质可得结合,由线面垂直的判定定理可得平面,从而可得结果;(2)连接与交点为,连接,先证明为平行四边形,可得,由线面平行的判定定理可得结论.
(1)由题知AC⊥BD,BB1⊥平面ABCD,
AC平面ABCD, 所以AC⊥BB1
而BD∩BB1=B, 所以AC⊥平面BB1D1D,
B1D1平面BB1D1D,所以AC⊥B1D1
(2)证明:连接AC与BD交点为O,连接AO,
由正方体知AC//AC,AC=AC,OC//AO,OC=AO
所以OCOA为平行四边形,即 OC//AO
又 AO在面ABD,OC不在面ABD,
所以OC//面ABD(线线平行---线面平行)
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2,AB=2 .
(1)求异面直线PC与AD所成角的大小;
(2)若平面ABCD内有一经过点C的曲线E,该曲线上的任一动点Q都满足PQ与AD所成角的大小恰等于PC与AD所成角.试判断曲线E的形状并说明理由;
(3)在平面ABCD内,设点Q是(2)题中的曲线E在直角梯形ABCD内部(包括边界)的一段曲线CG上的动点,其中G为曲线E和DC的交点.以B为圆心,BQ为半径r的圆分别与梯形的边AB、BC交于M、N两点.当Q点在曲线段CG上运动时,试求圆半径r的范围及VP﹣BMN的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.
(1)在给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;
(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4﹣5:不等式选讲)
已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)设a>﹣1,且当 时,f(x)≤g(x),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业员工500人参加“学雷锋”活动,按年龄共分六组,得频率分布直方图如下:
(1)现在要从年龄较小的第1、2、3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的各抽取多少人?
(2)在第(1)问的前提下,从这6人中随机抽取2人参加社区活动,求至少有1人年龄在第3组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】街道旁边有一游戏:在铺满边长为9 cm的正方形塑料板的宽广地面上,掷一枚半径为1 cm的小圆板,规则如下:每掷一次交5角钱,若小圆板压在正方形的边上,可重掷一次;若掷在正方形内,须再交5角钱可玩一次;若掷在或压在塑料板的顶点上,可获得一元钱,试问:
(1)小圆板压在塑料板的边上的概率是多少?
(2)小圆板压在塑料板顶点上的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的左焦点为,离心率为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设为坐标原点, 为直线上一点,过作的垂线交椭圆于, .当四边形是平行四边形时,求四边形的面积。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com