精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
已知椭圆的离心率为,点上两点,斜率为的直线与椭圆交于点在直线两侧).

(I)求四边形面积的最大值;
(II)设直线的斜率为,试判断是否为定值.若是,求出这个定值;若不是,说明理由.
(1)=;(2)为定值.
(I),设椭圆,将点代入椭圆,得
所以椭圆的方程为     …………2分
设直线的方程为
,得
,                       …………4分

=
显然当时, =                      …………6分
(II)设直线的方程分别为 (5) 
将(5)代入(4)得:                        …………8分
  同理:
           …………10分
化简得:            
为定值。                                  …………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的两焦点分别为,且椭圆上的点到的最小距离为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作直线交椭圆两点,设线段的中垂线交轴于,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆的左焦点轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为__________________ .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,过点作抛物线 的切线,切点A在第二象限.

(1)求切点A的纵坐标;
(2)若离心率为的椭圆恰好经过切点A,设切线交椭圆的另一点为B,记切线,OA,OB的斜率分别为,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知过点的直线与椭圆交于不同的两点,点是弦的中点.
(Ⅰ)若,求点的轨迹方程;
(Ⅱ)求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E的中心在坐标原点,焦点在轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;是过点且相互垂直的两条直线,交椭圆E于两点,交椭圆E于两点,的中点分别为
(1)求椭圆E的标准方程;
(2)求直线的斜率的取值范围;
(3)求证直线与直线的斜率乘积为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分15分)已知椭圆ab>0)的离心率,过点A(0,-b)和Ba,0)的直线与原点的距离为 
(1)求椭圆的方程 
(2)已知定点E(-1,0),若直线ykx+2(k≠0)与椭圆交于C D两点 问:是否存在k的值,使以CD为直径的圆过E点?请说明理由 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线的极坐标方程是ρ=2,以极点为原点,极轴为轴的正半轴建立平面直角坐标系
(1) 写出曲线的直角坐标方程;
(2)若把上各点的坐标经过伸缩变换后得到曲线,求曲线上任意一点到两坐标轴距离之积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的左、右焦点分别为,线段被抛物线的焦点F分成5:3两段,则椭圆的离心率为 (   )
A.B.C.D.

查看答案和解析>>

同步练习册答案