精英家教网 > 高中数学 > 题目详情
已知二次函数y=f(x)=x2+bx+c的图象过点(1,13),且函数对称轴方程为x=-
12

(1)求f(x)的解析式;
(2)已知t<2,g(x)=[f(x)-x2-13]|x|,求函数g(x)在[t,2]上的最大值和最小值;
(3)函数y=f(x)的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.
分析:(1)根据函数对称轴方程为x=-
1
2
,求得b的值,再由f(x)=x2+bx+c的图象过点(1,13),求出c的值,从而求得f(x)的解析式;
(2)由题意可得 g(x)=(x-2)•|x|,画出它的图象,讨论t的范围,结合图象求出g(x)在[t,2]上的最值.
(3)如果函数y=f(x)的图象上存在符合要求的点,设为P(m,n2),从而4n2-(2m+1)2=43,由此求得m、n的值,从而得出结论.
解答:解:(1)∵二次函数y=f(x)=x2+bx+c的图象过点(1,13),且函数对称轴方程为x=-
1
2

-
b
2
=-
1
2
1+b+c=13

∴b=1,c=11
∴f(x)=x2+x+11;
(2)g(x)=[f(x)-x2-13]|x|=(x-2)|x|,
当x≤0时,g(x)=-(x-1)2+1,
当x>0时,g(x)=(x-1)2-1,由此可知g(x)在[t,2]上的最大值 g(x)max=g(2)=0.
当1≤t<2,g(x)min =g(t)=t2-2t.
当1-
2
≤t<1,g(x)min=g(1)=-1.
当t<1-
2
,g(x)min=g(t)=-t2+2t;
3)如果函数y=f(x)的图象上存在符合要求的点,设为P(m,n2),
其中m为正整数,n为自然数,则m2+m+11=n2,从而4n2-(2m+1)2=43,
即[2n+(2m+1)][2n-(2m+1)]=43.
注意到43是质数,且2n+(2m+1)>2n-(2m+1),2n+(2m+1)>0,
所以
2n+(2m+1)=43
2n-(2m+1)=1
,解得mm=10,n=11
因此,函数y=f(x)的图象上存在符合要求的点,它的坐标为(10,121).
点评:本题主要考查二次函数的性质应用,求二次函数在闭区间上的最值的方法,考查分类讨论、数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=f(x)(x∈R)的图象过点(0,-3),且f(x)>0的解集(1,3).
(1)求f(x)的解析式;
(2)求函数y=f(sinx),x∈[0,
π2
]
的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)图象的顶点是(-1,3),又f(0)=4,一次函数y=g(x)的图象过(-2,0)和(0,2).
(1)求函数y=f(x)和函数y=g(x)的解析式;
(2)求关于x的不等式f(x)>3g(x)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象关于直线x=2对称,且在x轴上截得的线段长为2.若f(x)的最小值为-1,求:
(1)函数f(x)的解析式;
(2)函数f(x)在[t,t+1]上的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象如图所示:
(1)求函数y=f(x)的解析式;
(2)根据图象写出不等式f(x)>0的解集;
(3)若方程|f(x)|=k有两个不相等的实数根,根据函数图象及变换知识,求k的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)=x2+bx+c的图象过点(1,13),且函数y=f(x-
12
)
是偶函数.
(1)求f(x)的解析式;
(2)已知t<2,g(x)=[f(x)-x2-13]•|x|,求函数g(x)在[t,2]上的最大值和最小值;
(3)函数y=f(x)的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案