精英家教网 > 高中数学 > 题目详情
已知Ω={(x,y)|x+y≤8,x≥0,y≥0},A={(x,y)|x≤2,y≥0,3x-y≥0},若向区域Ω上随机投1个点P,则点P落入区域A的概率为(  )
A、
1
4
B、
7
16
C、
3
4
D、
3
16
分析:本题考查的知识点是几何概型的意义,关键是要找出A={(x,y)|x≤2,y≥0,3x-y≥0}对应面积的大小,然后将其代入几何概型的计算公式进行求解.在解题过程中,注意三角形面积的应用.
解答:解:精英家教网由图易得,
满足条件A的区域面积S(A)=6,
满足条件Ω的区域面积S(Ω)=32,
故所求的概率P=
6
32
=
3
16

故选D.
点评:本题考查的知识点是几何概型的意义,关键是要找出A={(x,y)|x≤4,y≥0,x-2y≥0}对应面积的大小,并将其和长方形面积一齐代入几何概型计算公式进行求解.几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A={(x,y)||x-a|+|y-1|≤1},B={(x,y)|(x-1)2+(y-1)2≤1},若集合A∩B≠φ,则实数a的取值范围是(  )
A、[-1,3]
B、[-1-
2
2
]
C、[-3,1]
D、[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={(x,y)|
yx2
=1},B={(x,y)|x2-y=0},C={(0,0),(1,1),(-1,0)},则(A∪B)∩C
{(0,0),(1,1)}
{(0,0),(1,1)}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)已知正实数x,y满足等式x+y+8=xy,若对任意满足条件的x,y,都有不等式(x+y)2-a(x+y)+1≥0恒成立,则实数a的取值范围是
(-∞,
65
8
]
(-∞,
65
8
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数x,y满足
1
x
+
2
y
=1
,则x+2y的最小值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(x,y)在映射f:A→B作用下的像是(x+y,x-y),x∈R,y∈R,则点(3,1)的原像是
 

查看答案和解析>>

同步练习册答案