【题目】如图,A、B为椭圆C:短轴的上、下顶点,P为直线l:y=2上一动点,连接PA并延长交椭圆于点M,连接PB交椭圆于点N,已知直线MA,MB的斜率之积恒为.
(1)求椭圆C的标准方程;
(2)若直线MN与x轴平行,求直线MN的方程;
(3)求四边形AMBN面积的最大值,并求对应的点P的坐标.
【答案】(1)(2)(3)四边形AMBN面积的最大值为,对应的点P的坐标为(,2)
【解析】
(1)根据题意有A(0,1),B(0,﹣1),设M(x,y),根据直线MA,MB的斜率之积恒为,即求解.
(2)根据题意设M(m,n),则N(﹣m,n),,联立求解,令求解.
(3)设P(t,2),t≠0,与椭圆联立得,求得 的坐标,同理求得的坐标,然后由S四边形AMBN求解.
(1)A(0,1),B(0,﹣1),设M(x,y),则
,
因此,椭圆C的标准方程为:;
(2)设M(m,n),则N(﹣m,n),
则,
联立解得,所以,故直线MN的方程为:;
(3)设P(t,2),t≠0,
与椭圆联立得解得或,,
同理或
所以S四边形AMBN
令,则S四边形AMBN,
,故在上递减,
故,即,即时,,
即S四边形AMBN的最大值为
因此,四边形AMBN面积的最大值为,对应的点P的坐标为(,2).
科目:高中数学 来源: 题型:
【题目】在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各50户贫困户为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标x,将指标x按照分成五组,得到如图所示的频率分布直方图.
规定若,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”,且当时,认定该户为“低收入户”;当时,认定该户为“亟待帮助户”,已知此次调查中甲村的“绝对贫困户”占甲村贫困户的24%.
(1)完成下面的列联表,并判断是否有90%的把握认为绝对贫困户数与村落有关;
甲村 | 乙村 | 总计 | |
绝对贫困户 | |||
相对贫困户 | |||
总计 |
(2)若两村“低收入户”中乙村“低收入户”占比为,两村“亟待帮助户”中乙村“亟待帮助户”占比为,且乙村贫困指标在上的户数成等差数列,试估计乙村贫困指标x的平均值.
附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据某省的高考改革方案,考生应在3门理科学科(物理、化学、生物)和3门文科学科(历史、政治、地理)的6门学科中选择3门学科参加考试.根据以往统计资料,1位同学选择生物的概率为0.5,选择物理但不选择生物的概率为0.2,考生选择各门学科是相互独立的.
(1)求1位考生至少选择生物、物理两门学科中的1门的概率;
(2)某校高二段400名学生中,选择生物但不选择物理的人数为140,求1位考生同时选择生物、物理两门学科的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆 的左右焦点分别为的、,离心率为;过抛物线焦点的直线交抛物线于、两点,当时, 点在轴上的射影为。连结并延长分别交于、两点,连接; 与的面积分别记为, ,设.
(Ⅰ)求椭圆和抛物线的方程;
(Ⅱ)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2016年1月至2018年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,判断下列结论:
(1)月接待游客量逐月增加;
(2)年接待游客量逐年增加;
(3)各年的月接待游客量高峰期大致在7,8月;
(4)各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳.
其中正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)设点,直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在无穷数列中,,记前项中的最大项为,最小项为,令.
(1)若的前项和满足.
①求;
②是否存在正整数满足?若存在,请求出这样的,若不存在,请说明理由.
(2)若数列是等比数列,求证:数列是等比数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com