精英家教网 > 高中数学 > 题目详情
12.直线x+2y-4=0与直线2x-y+2=0的交点坐标是(  )
A.(2,0)B.(2,1)C.(0,2)D.(1,2)

分析 将二直线的方程联立解出即可.

解答 解:联立$\left\{\begin{array}{l}{x+2y-4=0}\\{2x-y+2=0}\end{array}\right.$,解得x=0,y=2,
直∴线x+2y-4=0与直线2x-y+2=0的交点坐标是(0,2).
故选:C.

点评 正确理解方程组的解与直线的交点的坐标之间的关系是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在平面之间坐标系中,角α的终边经过点P(1,2).
(1)求tanα的值;
(2)求$\frac{sinα+2cosα}{2sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若存在常数k(k∈N*,k≥2)、q、d,使得无穷数列{an}满足${a_{n+1}}=\left\{\begin{array}{l}{a_n}+d,\frac{n}{k}∉{N^*}\\ q{a_n},\frac{n}{k}∈{N^*}\end{array}\right.$则称数列{an}为“段比差数列”,其中常数k、q、d分别叫做段长、段比、段差.设数列{bn}为“段比差数列”.
(1)若{bn}的首项、段长、段比、段差分别为1、3、q、3.
①当q=0时,求b2016
②当q=1时,设{bn}的前3n项和为S3n,若不等式${S_{3n}}≤λ•{3^{n-1}}$对n∈N*恒成立,求实数λ的取值范围;
(2)设{bn}为等比数列,且首项为b,试写出所有满足条件的{bn},并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知定点Q($\sqrt{3}$,0),P为圆N:${(x+\sqrt{3})^2}+{y^2}=24$上任意一点,线段QP的垂直平分线交NP于点M.
(Ⅰ)当P点在圆周上运动时,求点M (x,y) 的轨迹C的方程;
(Ⅱ)若直线l与曲线C交于A、B两点,且$\overrightarrow{OA}•\overrightarrow{OB}=0$,求证:直线l与某个定圆E相切,并求出定圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={-1,1},B={1,-1,3},那么A∩B=等于(  )
A.{-1}B.{1}C.{-1,1}D.{1,-1,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=log3x,f(a)>f(2),那么a的取值范围是(  )
A.{a|a>2}B.{a|1<a<2}C.$\{a|a>\frac{1}{2}\}$D.$\{a|\frac{1}{2}<a<1\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数$f(x)=\frac{1}{x-1}$.关于f(x)的性质,给出下面四个判断:
①f(x)的定义域是R;
②f(x)的值域是R;
③f(x)是减函数;
④f(x)的图象是中心对称图形.
其中正确的判断是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线x-y-1=0的倾斜角是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点P(-2$\sqrt{2}$,0)是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点,过点P作圆O:x2+y2=4的切线,切点为A,B,若直线AB恰好过椭圆C的左焦点F,则a2+b2的值是(  )
A.12B.13C.14D.15

查看答案和解析>>

同步练习册答案