精英家教网 > 高中数学 > 题目详情
12.当实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$时,若存在(x,y)使得y≥4-ax成立,则实数a的取值范围是(  )
A.(-∞,$\frac{3}{2}$]B.(-∞,$\frac{3}{2}$)C.[$\frac{3}{2}$,+∞)D.($\frac{3}{2}$,+∞)

分析 由约束条件作出可行域,再由y≥4-ax恒成立,结合可行域内特殊点的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.

解答 解:由约束条件作可行域如图,

联立$\left\{\begin{array}{l}{x-y-1=0}\\{x+2y-4=0}\end{array}\right.$,解得B(2,1),
要使y≥4-ax恒成立,
则1≥4-2a,解得:a≥$\frac{3}{2}$
故选:C.

点评 本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=sin(2x+$\frac{π}{3}$),若[a,b]⊆[0,π],且f(a)=f(b),则a的取值范围是[$\frac{π}{6}$,$\frac{7π}{12}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:
7527   0293   7140   9857   0347   4373   8636   6947   1417   4698
0371   6233   2616   8045   6011   3661   9597   7424   7610   4281
根据以上数据估计该射击运动员射击4次至少击中3次的概率为(  )
A.0.852B.0.8192C.0.8D.0.75

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设i为虚数单位,若复数z=(m2+2m-8)+(m-2)i是纯虚数,则实数m=(  )
A.2B.-4或2C.2或-4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)(x∈R)满足f(1)=1,且f′(x)<1,则不等式f(1g2x)<1g2x的解集为(  )
A.$({0,\frac{1}{10}})$B.(10,+∞)C.$({\frac{1}{10},10})$D.$({0,\frac{1}{10}})∪({10,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知△ABC的边BC长为2$\sqrt{3}$,∠A=60°,则顶点A的轨迹方程为x2+y2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知a、b是方程log3x3+log27(3x)=-$\frac{4}{3}$的两个根,则a+b=$\frac{10}{81}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知各项均为正数的等比数列{an},其公比q>1,且满足a2a4=64,a3+2是a2,a4的等差中项.
(1)求a3
(2)求数列{an}的通项公式;
(3)设An=an+1-2,Bn=log${\;}_{2}^{2}$an+1,试比较An与Bn的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如:(1,2)∪[3,5)的长度d=(2-1)+(5-3)=3,用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x},g(x)=x-1,若用d1,d2,d3分别表示不等式f(x)>g(x),方程f(x)=g(x),不等式f(x)<g(x)解集区间的长度,则当0≤x≤2011时,有(  )
A.)d1=1,d2=2,d3=2008B.)d1=1,d2=1,d3=2009
C.)d1=3,d2=5,d3=2003D.)d1=2,d2=3,d3=2006

查看答案和解析>>

同步练习册答案