精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中是自然对数的底数.

(1)若关于的不等式上恒成立,求实数的取值范围;

(2)已知正数满足:存在,使得成立.试比较的大小,并证明你的结论.

【答案】(1);(2)见解析.

【解析】分析:(1),不等式可化为 ,对可把作为一个整体,分子分母同除以,转化后可利用基本不等式求得其最值,从而得的范围;

(2)令函数,则,由导数可求得的最小值,而题中命题成立,即这个最小值,从而可得的取值范围,而比较,即比较的大小,即比较的大小.于是可构造函数),利用导数得出其单调性,从而得结论.

详解:(1)由条件知上恒成立,

),则,所以对于任意成立.

因为,∴

当且仅当,即时等号成立.

因此实数的取值范围是

(2)令函数,则

时,,又,故

所以上的单调递增函数,

因此上的最小值是

由于存在,使成立,当且仅当最小值

,即

均为正数,同取自然底数的对数,

即比较的大小,试比较的大小.

构造函数),则

再设,从而上单调递减,

此时,故上恒成立,则上单调递减.

综上所述,当时,

时,

时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且x≤0时, f(x)=-x+1

(1)求f(0),f(2);

(2)求函数f(x)的解析式;

(3)若f(a-1)<3,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是奇函数.

1)求

2)对,不等式恒成立,求实数的取值范围;

3)令,若关于的方程有唯一实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】研究变量得到一组样本数据,进行回归分析有以下结论

残差平方和越小的模型,拟合的效果越好

用相关指数来刻画回归效果越小说明拟合效果越好

在回归直线方程中,当解释变量每增加1个单位时,预报变量平均增加0.2个单位

若变量之间的相关系数为则变量之间的负相关很强,以上正确说法的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数

1)若的解集为,且方程有两个相等的根,求解析式;

2)若且对任意实数均有成立,当时,是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为函数的导函数.

(1)设函数的图象与轴交点为,曲线点处的切线方程是,求的值;

(2)若函数,求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若时,讨论函数的单调性;

(2)若函数在区间上恰有2个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生物学家预言,21世纪将是细菌发电造福人类的时代。说起细菌发电,可以追溯到1910年,英国植物学家利用铂作为电极放进大肠杆菌的培养液里,成功地制造出世界上第一个细菌电池。然而各种细菌都需在最适生长温度的范围内生长。当外界温度明显高于最适生长温度,细菌被杀死;如果在低于细菌的最低生长温度时,细菌代谢活动受抑制。为了研究某种细菌繁殖的个数是否与在一定范围内的温度有关,现收集了该种细菌的6组观测数据如下表:

经计算得:,线性回归模型的残差平方和.其中分别为观测数据中的温度与繁殖数,.

参考数据:

(Ⅰ)求关于的线性回归方程(精确到0.1);

(Ⅱ)若用非线性回归模型求得关于回归方程为,且非线性回归模型的残差平方和

(ⅰ)用相关指数说明哪种模型的拟合效果更好;

(ⅱ)用拟合效果好的模型预测温度为34℃时该种细菌的繁殖数(结果取整数).

附:一组数据,其回归直线的斜率和截距的最小二乘法估计为

相关指数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂每日生产一种产品吨,每日生产的产品当日销售完毕,日销售额为万元,产品价格随着产量变化而有所变化,经过一段时间的产销,得到了的一组统计数据如下表:

(1)请判断中,哪个模型更适合刻画之间的关系?可从函数增长趋势方面给出简单的理由;

(2)根据你的判断及下面的数据和公式,求出关于的回归方程,并估计当日产量时,日销售额是多少?

.

线性回归方程中,.

查看答案和解析>>

同步练习册答案