精英家教网 > 高中数学 > 题目详情
2.对大于或等于2的自然数 m的n 次方幂有如下分解方式:
22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n2=1+3+5+…+19,m3(m∈N*)的分解中最小的数是21,则m+n的值为(  )
A.15B.16C.17D.18

分析 根据等差数列的通项公式以及数列的求和公式即可求出m,n的值,进而得到答案.

解答 解:依题意得 n2=1+3+5+…+19=$\frac{10×(1+19)}{2}$=100,
∴n=10.
∵m3(m∈N*)的分解中最小的数是21,
∴m3=21m+$\frac{m(m-1)}{2}×2$=m2+20m,
即m2-m-20=0,
∴(m-5)(m+4)=0,
∴m=5或m=-4.
又 m∈N*
∴m=5,
∴m+n=15.
故选:A

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知$\overline{z}$是z的共轭复数,若$\overline{z}$=1+i(i是虚数单位),则$\frac{2}{z}$=(  )
A.1-iB.-1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知loga484=m,loga88=n,试用m、n表示log211.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若sin6α+cos6α=$\frac{1}{4}$,求cos2015α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设A,B为椭圆$\frac{{x}^{2}}{4}$+y2=1上满足OA⊥OB(O为原点)的两点.
(1)以O为极点,Ox轴为极轴建立极坐标系,求椭圆的极坐标方程;
(2)求$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$的值;
(3)判断直线AB与圆C:x2+y2=$\frac{4}{5}$的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知M={(x,y)|x>0,y>0,x+y=k且x≠y}(其中k为常数,且k>0)、
(1)若(x,y)∈M,设t=xy,求t的取值范围;
(2)若对任意(x,y)∈M均有($\frac{1}{x}$-x)($\frac{1}{y}$-y)≠($\frac{k}{2}$-$\frac{2}{k}$)2,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$cosα=\frac{12}{13},α∈(\frac{3π}{2},2π)$,则$cos(α+\frac{π}{4})$=$\frac{17\sqrt{2}}{26}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)═ln$\sqrt{2x+1}$-mx(m∈R).
(1)求f(x)单调性;
(2)若2f(x)≤m+1求m的取值范围;
(3)若m=-1,0<a<b<1,证明$\frac{4}{3}$<$\frac{f(b)-f(a)}{b-a}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,若在直线x=$\frac{{a}^{2}}{c}$上存在点P,使△PF1F2为等腰三角形,则椭圆的离心率的取值范围是(  )
A.(0,$\frac{\sqrt{3}}{3}$)B.(0,$\frac{\sqrt{2}}{2}$)C.($\frac{\sqrt{3}}{3}$,1)D.($\frac{\sqrt{2}}{2}$,1)

查看答案和解析>>

同步练习册答案