精英家教网 > 高中数学 > 题目详情
17.某三棱锥的三视图如图所示,则该三棱锥四个面中,为直角三角形的个数为(  )
A.1B.2C.3D.4

分析 由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,画出直观图,分析各个面的形状,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,
其直观图如下图所示:

底面△BCD,侧面△ABD,侧面△ABC均为直角三角形,
侧面△ACD是腰长为$\sqrt{5}$,底长$\sqrt{2}$的等腰三角形,
故选:C

点评 本题考查的知识点是简单空间几何体的三视图,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若复数z满足iz=3+5i,则在复平面内复数$\overline{z}$对应的点的坐标是(  )
A.(3,5)B.(3,-5)C.(5,-3)D.(5,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,则异面直线AD1与BB1所成角的余弦值为$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{2}{x}+alnx-2$,若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直.
(1)求a值,并解不等式f′(x)<-6;
(2)若g(x)=f(x)+x-b(b∈R)在[e-1,e]上有两个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知直线ax+y-1=0与圆C:(x-1)2+(y+a)2=1相交于A,B两点,且△ABC为等腰直角三角形,则实数a的值为-1或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.以椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$的左焦点F1为圆心,过此椭圆右顶点A的圆截直线3x+4y-21=0所得的弦长为$4\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的左右顶点分别为A、B,点P为椭圆上异于A,B的任意一点.
(Ⅰ)求直线PA与PB的斜率乘积的值;
(Ⅱ)设Q(t,0)(t≠$\sqrt{3}$),过点Q作与x轴不重合的任意直线交椭圆E于M,N两点,则是否存在实数t,使得以MN为直径的圆恒过点A?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知F1、F2为椭圆C:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{2}$=1(a>b>0)的左、右两个焦点,斜率不为0的直线l过左焦点F1 且交椭圆C于A(x1,y1),B(x2,y2)两点,
(1)求|F1F2|的长度.
(2)求证:S${\;}_{△AB{F}_{2}}$=2|y1-y2|
(3)求△ABF2面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.圆柱被一个平面截去一部分与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若半球的半径r=2,则该几何体的表面积为16+20π.

查看答案和解析>>

同步练习册答案