分析 (Ⅰ)连结AC,BD,交于点O,连结OE,则OE∥SD,由此能证明SD∥平面ACE.
(Ⅱ)取BC中点G,以G为原点,GA为x轴,GB为y轴,GS为z轴,建立空间直角坐标系,利用向是量法能求出二面角D-SC-B的余弦值.
解答 证明:(Ⅰ)连结AC,BD,交于点O,连结OE,
∵底面ABCD为平行四边形,∴O是BD中点,
∵点E是SB的中点,∴OE∥SD,
∵SD?平面ACE,OE?平面ACE,
∴SD∥平面ACE.
解:(Ⅱ)取BC中点G,连结SG,AG,
∵∠SBC=45°,SC=SB=2$\sqrt{2}$,△ACD为等边三角形,
∴SG⊥平面ABCD,AG⊥BC,
以G为原点,GA为x轴,GB为y轴,GS为z轴,建立空间直角坐标系,
S(0,0,$\sqrt{2}$),C(0,-$\sqrt{2}$,0),D($\sqrt{6}$,-2$\sqrt{2}$,0),
$\overrightarrow{CD}$=($\sqrt{6}$,-$\sqrt{2}$,0),$\overrightarrow{CS}$=(0,$\sqrt{2}$,$\sqrt{2}$),
设平面SCD的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CD}=\sqrt{6}x-\sqrt{2}y=0}\\{\overrightarrow{n}•\overrightarrow{CS}=\sqrt{2}y+\sqrt{2}z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,$\sqrt{3}$,-$\sqrt{3}$),
平面SCB的法向量$\overrightarrow{m}$=(1,0,0),
设二面角D-SC-B的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{7}}$=$\frac{\sqrt{7}}{7}$.
∴二面角D-SC-B的余弦值为$\frac{\sqrt{7}}{7}$.
点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
A. | P | B. | Q | C. | P∪Q | D. | P∩Q |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 3 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{\sqrt{2}}{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com