【题目】已知为抛物线上的一点,,为抛物线上异于点的两点,且直线的斜率与直线的斜率互为相反数.
(1)求直线的斜率;
(2)设直线过点并交抛物线于,两点,且,直线与轴交于点,试探究与的夹角是否为定值,若是则求出定值,若不是,说明理由.
【答案】(1); (2)是定值,
【解析】
(1)根据点的坐标求出抛物线方程,设出点和点的坐标,利用斜率公式和抛物线方程,求出和,再根据和互为相反数,得到,进而求出直线的斜率;
(2)设出点和点的坐标,根据,得到,再设出直线的方程,与抛物线联立,利用韦达定理,并结合,化简,得到的坐标表示,求出,借助向量的数量积,即可求得与的夹角.
(1)设,,
因为点为抛物线上的一点,
所以,解得,所以,
同时,有,,
,
同理,,
因为直线的斜率与直线的斜率互为相反数,
所以,即,
故.
(2)设直线的方程为,,,,
将直线的方程代入,得,
所以,,
,,且,
,解得,
,
又
,
,
又,,
,即与的夹角为.
与的夹角是定值,定值为.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为(t为参数),点A(1,0),B(3,),若以直角坐标系xOy的O点为极点,x轴正方向为极轴,且长度单位相同,建立极坐标系.
(1)求直线AB的极坐标方程;
(2)求直线AB与曲线C交点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,点,,分别为椭圆的左焦点、右顶点和下顶点,的面积为,且椭圆的离心率为.
(1)求椭圆的标准方程;
(2)若点为椭圆上一点,直线与椭圆交于不同的两点,,且(点为坐标原点),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】BMI指数(身体质量指数,英文为BodyMassIndex,简称BMI)是衡量人体胖瘦程度的一个标准,BMI=体重(kg)/身高(m)的平方.根据中国肥胖问题工作组标准,当BMI≥28时为肥胖.某地区随机调查了1200名35岁以上成人的身体健康状况,其中有200名高血压患者,被调查者的频率分布直方图如下:
(1)求被调查者中肥胖人群的BMI平均值;
(2)填写下面列联表,并判断是否有99.9%的把握认为35岁以上成人患高血压与肥胖有关.
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
肥胖 | 不肥胖 | 合计 | |
高血压 | |||
非高血压 | |||
合计 |
附:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,,,给出以下四个命题:①为偶函数;②为偶函数;③的最小值为0;④有两个零点.其中真命题的是( ).
A.②④B.①③C.①③④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在党中央的正确领导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙两个地区采取防护措施后,统计了从2月7日到2月13日一周的新增“新冠肺炎”确诊人数,绘制成如下折线图:
(1)根据图中甲、乙两个地区折线图的信息,写出你认为最重要的两个统计结论;
(2)治疗“新冠肺炎”药品的研发成了当务之急,某药企计划对甲地区的项目或乙地区的项目投入研发资金,经过评估,对于项目,每投资十万元,一年后利润是l.38万元、1.18万元、l.14万元的概率分别为、、;对于项目,利润与产品价格的调整有关,已知项目产品价格在一年内进行2次独立的调整,每次价格调整中,产品价格下调的概率都是,记项目一年内产品价格的下调次数为,每投资十万元,取0、1、2时,一年后相应利润是1.4万元、1.25万元、0.6万元.记对项目投资十万元,一年后利润的随机变量为,记对项目投资十万元,一年后利润的随机变量为.
(i)求,的概率分布列和数学期望,;
(ii)如果你是投资决策者,将做出怎样的决策?请写出决策理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,是椭圆上一动点(与左、右顶点不重合)已知的内切圆半径的最大值为,椭圆的离心率为.
(1)求椭圆C的方程;
(2)过的直线交椭圆于两点,过作轴的垂线交椭圆与另一点(不与重合).设的外心为,求证为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com