精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}的各项均为正数,a1=1,前n项和为Sn.数列{bn}为等比数列,b1=1,且b2S2=6,b2S3=8.

(1)求数列{an}与{bn}的通项公式;

(2)求.

【答案】(1)annbn=2n1(2)

【解析】试题分析:(1)设等差数列{an}的公差为d,d>0,{bn}的公比为q,运用等差数列和等比数列的通项公式和求和公式,解方程可得公差和公比,即可得到所求通项公式;

(2)明确通项的表达式,利用错位相减法求和.

试题解析:

(1)设等差数列{an}的公差为dd>0,等比数列{bn}的公比为q

an=1+(n-1)dbnqn-1.

依题意有

解得 (舍去).

annbn=2n-1.

(2)(1)Sn=1+2+…+nn(n+1),

=2

+…+=2

=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知平面ADC∥平面A1B1C1 , B为线段AD的中点,△ABC≈△A1B1C1 , 四边形ABB1A1为正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M为棱A1C1的中点.
(Ⅰ)若N为线段DC1上的点,且直线MN∥平面ADB1A1 , 试确定点N的位置;
(Ⅱ)求平面MAD与平面CC1D所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)求的值;

(II)求

(III)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共14分)

如图,在四棱锥中, 平面,底面是菱形, .

()求证: 平面

)若所成角的余弦值;

)当平面与平面垂直时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a为实常数,y=f(x)是定义在R上的奇函数,当x>0时,f(x)=4x++3,则对于y=f(x)在x<0时,下列说法正确的是(  )
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)的最小值为1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在区间[2aa+1]上不单调,求实数a的取值范围;

3)在区间[11]上,yfx)的图象恒在y2x+2m+1的图象上方,试确定实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b 是函数 的两个不同的零点,且a,b,-2 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于( )
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于区间[a,b](a<b),若函数同时满足:①在[a,b]上是单调函数,②函数在[a,b]的值域是[a,b],则称区间[a,b]为函数的“保值”区间

(1)求函数的所有“保值”区间

(2)函数是否存在“保值”区间?若存在,求的取值范围,若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一次函数上的减函数,,且 f [ f(x)]=16x-3.

(1)求

(2)若在(-2,3)单调递增,求实数的取值范围;

(3)当时,有最大值1,求实数的值.

查看答案和解析>>

同步练习册答案